【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的WOA优化LSTM时间序列预测模型 优势明显,注释详细,绘图丰富

简介: 【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的WOA优化LSTM时间序列预测模型 优势明显,注释详细,绘图丰富

【MATLAB第36期】基于MATLAB的QOWOA-LSTM鲸鱼优化算法准反向策略的QOWOA优化LSTM时间序列预测模型,优势明显,注释详细,绘图丰富


一、代码优势


1.使用优化后的QOWOA算法优化LSTM超参数(学习率,隐藏层节点,正则化系数,训练次数)

2.目标函数考虑训练集和测试集,更加合理;运行结果稳定,可直接调用结果,且调用结果非常方便。

3.滑动窗口方法处理单列时间序列数据,考虑历史数据的影响。

4.代码一体化,一键运行;注释丰富,评价指标丰富,逻辑清晰,适合小白学习。

5.代码绘图丰富(除基础绘图以外,还包括训练LOSS图、超参数迭代图)、美观

6.命令行窗口可见运行过程的结果.

7.参数可在代码中设置,方便调试;优化超参数可以根据需求更改 。


二、后期研究计划


后续将在博文中更新更丰富、功能更完整的作品,敬请期待。

1.多层LSTM结构优化,含单向LSTM/GRU和双向Bilstm混合模型

2.更多超参数优化,含结构层数量、隐含层节点数、最小批处理数量、时间步数等

3.含预测未来功能

4.更多新的算法以及在基础上改进算法对比。

5.loss内置函数修改

6.多场景应用(分类、回归、多输入多输出等等)


三、代码展示

%%  1.清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  2.导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');
%%  3.数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
%%  4.划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%%  5.数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  6.划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  7.数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  8.数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));
t_train = t_train';
t_test  = t_test' ;
%%  9.数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end
%%  10.优化算法参数设置
SearchAgents_no = 5;                   % 种群数量
Max_iteration = 5;                    % 最大迭代次数
dim = 4;                               % 优化参数个数
lb = [1e-3, 10, 1e-4,20];                 % 参数取值下界(学习率,隐藏层节点,正则化系数,训练次数)
ub = [1e-2, 80, 1e-3,100];                 % 参数取值上界(学习率,隐藏层节点,正则化系数,训练次数)
fobj=@(x)fun(x);  %适应度函数
%%  11.优化算法初始化
[Best_sol,Best_X,Convergence,BestNet,pos_curve]=QOWOA(SearchAgents_no,dim,Max_iteration,lb,ub,fobj)
%% 12.优化前LSTM运行结果
[fitness1,net1,res1,info1] =  fun([0.005,50,0.005,50]); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
predict_value1=res1.predict_value1;
predict_value2=res1.predict_value2;
true_value1=res1.true_value1;
true_value2=res1.true_value2;
i=1;
disp('-------------------------------------------------------------')
disp('LSTM结果:')
rmse1=sqrt(mean((true_value1(i,:)-predict_value1(i,:)).^2));
disp(['LSTM训练集根均方差(RMSE):',num2str(rmse1)])
mae1=mean(abs(true_value1(i,:)-predict_value1(i,:)));
disp(['LSTM训练集平均绝对误差(MAE):',num2str(mae1)])
mape1=mean(abs((true_value1(i,:)-predict_value1(i,:))./true_value1(i,:)));
disp(['LSTM训练集平均相对百分误差(MAPE):',num2str(mape1*100),'%'])
r2_1=R2(true_value1(i,:),predict_value1(i,:));
disp(['LSTM训练集R-square决定系数(R2):',num2str(r2_1)])
rmse2=sqrt(mean((true_value2(i,:)-predict_value2(i,:)).^2));
disp(['LSTM测试集根均方差(RMSE):',num2str(rmse2)])
mae2=mean(abs(true_value2(i,:)-predict_value2(i,:)));
disp(['LSTM测试集平均绝对误差(MAE):',num2str(mae2)])
mape2=mean(abs((true_value2(i,:)-predict_value2(i,:))./true_value2(i,:)));
disp(['LSTM测试集平均相对百分误差(MAPE):',num2str(mape2*100),'%'])
r2_2=R2(true_value2(i,:),predict_value2(i,:));
disp(['LSTM测试集R-square决定系数(R2):',num2str(r2_2)])
%% 13. LSTM绘图
%% 14.优化后WOA-LSTM运行结果  
[fitness2,net2,res2,info2] =  fun(Best_X); % 基础参数取值(学习率,隐藏层节点,正则化系数,训练次数)
%% 15.WOA-LSTM绘图
%% 16.QOWOA-LSTM运行结果
%% 17.QOWOA-LSTM绘图


四、运行结果


LSTM结果:

LSTM训练集根均方差(RMSE):0.023407

LSTM训练集平均绝对误差(MAE):0.01781

LSTM训练集平均相对百分误差(MAPE):2.9834%

LSTM训练集R-square决定系数(R2):0.95768

LSTM测试集根均方差(RMSE):0.024046

LSTM测试集平均绝对误差(MAE):0.01902

LSTM测试集平均相对百分误差(MAPE):3.2605%

LSTM测试集R-square决定系数(R2):0.78619


QOWOA-LSTM结果:

QOWOA-LSTM优化得到的最优参数为:

QOWOA-LSTM优化得到的隐藏单元数目为:42

QOWOA-LSTM优化得到的最大训练周期为:88

QOWOA-LSTM优化得到的InitialLearnRate为:0.0050054

QOWOA-LSTM优化得到的L2Regularization为:0.00058159

QOWOA-LSTM训练集根均方差(RMSE):0.012849

QOWOA-LSTM训练集平均绝对误差(MAE):0.0095498

QOWOA-LSTM训练集平均相对百分误差(MAPE):1.5737%

QOWOA-LSTM训练集R-square决定系数(R2):0.9858

QOWOA-LSTM测试集根均方差(RMSE):0.014634

QOWOA-LSTM测试集平均绝对误差(MAE):0.011312

QOWOA-LSTM测试集平均相对百分误差(MAPE):1.9105%

QOWOA-LSTM测试集R-square决定系数(R2):0.91914


五、代码获取


后台私信回复“36期”即可获取下载链接。

文章知识点与官方知识档案匹配,可进一

相关文章
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
1月前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。

热门文章

最新文章