【MATLAB第30期】基于MATLAB的adaboost多分类预测集成学习模型(四种模型GDA高斯判别分析、Knn、NB朴素贝叶斯、SVM)

简介: 【MATLAB第30期】基于MATLAB的adaboost多分类预测集成学习模型(四种模型GDA高斯判别分析、Knn、NB朴素贝叶斯、SVM)

【MATLAB第30期】基于MATLAB的adaboost多分类预测集成学习模型(四种模型GDA高斯判别分析、Knn、NB朴素贝叶斯、SVM)


一、简介


弱分类器

%1.GDA高斯判别分析

%2.Knn (NumNeighbors = 5) K邻近

%3.Naive Bayes 朴素贝叶斯

%4.SVM 支持向量机

强分类器

1.adaboost


adaboost算法:被前一个基分类器错误分类的样本的权重会增加,而被正确分类的样本的权重会减少,它将被用来再次训练下一个基本分类器。同时,在每次迭代中,增加一个新的弱分类器,直到预定的错误率足够小或者达到预设的最大迭代次数,将这些分类器加权融合确定最终的强分类器


以上针对二分类思路, 针对多分类,需要将四种弱分类器权重之和设为1。

二、数据及参数


12输入,1输出,最后分类标签4种即1-4 。

训练集70%,测试集30%,

adaboost运行次数5次 ,求五次Fmeasure结果最好的权重。

每种分类器运行后评价指标为Fmeasure和正确率。


三、展示代码


clear all
%% 选择弱分类器:
%1.GDA
%2.Knn (NumNeighbors = 5)
%3.Naive Bayes
%4.SVM
data=xlsread('数据集.xlsx');
[trset,teset ] = holdout( data,70 );  %70%训练 30测试
%% 训练集 测试集样本
X=trset(:,1:end-1);Y=trset(:,end);
Xtest=teset(:,1:end-1);Ytest=teset(:,end);
%% 1. Gaussian Discriminant Analysis Classification
gda_in=fitcdiscr(X,Y);  %训练模型
gda_out=predict(gda_in, Xtest); %仿真预测
Fmeasure_GDA=Fmeasure(1)  %Fmeasure值
Accuracy_GDA=Accuracy(1)% 准确率
%% 2.Knn Classification 
%% 3.Naive Bayes Classification
%% 4.SVM Classification
% Choose best in maxItr number of iterations
maxItr=5; %五次运行 取最大
%Performance Measures
Fmeasure_AdaBoost=Fmeasure(5)
Accuracy_AdaBoost=Accuracy(5)


四、运行结果



五、获取代码


后台私信回复“30”即可获取下载链接

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
9天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
1月前
|
测试技术
软件质量保护与测试(第2版)学习总结第十三章 集成测试
本文是《软件质量保护与测试》(第2版)第十三章的学习总结,介绍了集成测试的概念、主要任务、测试层次与原则,以及集成测试的不同策略,包括非渐增式集成和渐增式集成(自顶向下和自底向上),并通过图示详细解释了集成测试的过程。
59 1
软件质量保护与测试(第2版)学习总结第十三章 集成测试
|
1月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
1月前
|
前端开发 Java 程序员
springboot 学习十五:Spring Boot 优雅的集成Swagger2、Knife4j
这篇文章是关于如何在Spring Boot项目中集成Swagger2和Knife4j来生成和美化API接口文档的详细教程。
90 1
|
1月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
1月前
|
Java Spring
springboot 学习十一:Spring Boot 优雅的集成 Lombok
这篇文章是关于如何在Spring Boot项目中集成Lombok,以简化JavaBean的编写,避免冗余代码,并提供了相关的配置步骤和常用注解的介绍。
91 0
|
1月前
|
机器学习/深度学习 算法 前端开发
集成学习任务七和八、投票法与bagging学习
集成学习任务七和八、投票法与bagging学习
15 0
|
1月前
|
机器学习/深度学习 算法
【机器学习】迅速了解什么是集成学习
【机器学习】迅速了解什么是集成学习