【MATLAB第22期】基于MATLAB的xgboost算法多输入多输出回归模型 已购用户可在之前下载链接免费获取

简介: 【MATLAB第22期】基于MATLAB的xgboost算法多输入多输出回归模型 已购用户可在之前下载链接免费获取

【MATLAB第22期】基于MATLAB的xgboost算法多输入多输出回归模型 已购用户可在之前下载链接免费获取


往期文章:xgboost安装教程

最近有很多小伙伴私信我有关xgboost预测的问题,被问到最多的问题总结如下:


1.xgboost安装/运行失败。


关于问题1,还是建议多刷刷我的视频教学,有一部分用户反馈说按照我的步骤复现成功,我由衷为你们感到开心,另一部分没复现成功的也不要气馁,也许不是你们的操作原因,可能是matlab版本,操作系统,或是下载的文件版本不一致导致运行报错。由于报错的原因五花八门,有些也超过了我的认知范畴,抱歉不能为你们一一解答。图省事的用户可以直接找我有偿获取成品,我也将不断更新内容,来反馈各个支持的用户。


2.xgboost多输入多输出回归模型如何实现?


关于问题2,本身不是太困难,有基础的同学不妨自己试试。同时,为了答谢已购用户的支持,故免费更新多输入多输出回归模型,可在原链接已购商品中下载。

本代码支持多变量输出预测,只需更改行数及列数就行,比如以下示例为2输出。原谅我偷懒没考虑输出与输入之间是否有关联,而强行套数据,所以效果观感难免差一些。


P_train = res(temp(1: 80), 1: 6)';
T_train = res(temp(1: 80), 7:8)';
P_test = res(temp(81: end), 1: 6)';
T_test = res(temp(81: end), 7:8)';

不过我在原先基础上,优化了绘图和评价指标代码,不用你们再怎么修改对应代码,对小白还是相对友好

%%  相关指标计算
% 决定系数 R2
for k=1:VV
R1 (k,:)= 1 - norm(T_train(k,:) - T_sim1(k,:))^2 / norm(T_train(k,:) - mean(T_train(k,:)))^2;
R2 (k,:)= 1 - norm(T_test(k,:) -  T_sim2(k,:))^2 / norm(T_test(k,:) -  mean(T_test(k,:) ))^2;
disp(['变量' num2str(k) '训练集数据的R2为:', num2str(R1(k,:))])
disp(['变量' num2str(k) '测试集数据的R2为:', num2str(R2(k,:))])
% 平均绝对误差 MAE
mae1 (k,:)= sum(abs(T_sim1(k,:) - T_train(k,:))) ./ M ;
mae2(k,:) = sum(abs(T_sim2(k,:) - T_test(k,:) )) ./ N ;
disp(['变量' num2str(k) '训练集数据的MAE为:', num2str(mae1(k,:))])
disp(['变量' num2str(k) '测试集数据的MAE为:', num2str(mae2(k,:))])
% 平均相对误差 MBE
mbe1(k,:) = sum(T_sim1(k,:) - T_train(k,:)) ./ M ;
mbe2(k,:) = sum(T_sim2(k,:) - T_test(k,:) ) ./ N ;
disp(['变量' num2str(k) '训练集数据的MBE为:', num2str(mbe1(k,:))])
disp(['变量' num2str(k) '测试集数据的MBE为:', num2str(mbe2(k,:))])
end

运行结果:

变量1训练集数据的R2为:0.9998

变量1测试集数据的R2为:0.76982

变量1训练集数据的MAE为:0.39433

变量1测试集数据的MAE为:24.1249

变量1训练集数据的MBE为:0.0052592

变量1测试集数据的MBE为:-5.8176

变量2训练集数据的R2为:-1.9562

变量2测试集数据的R2为:-0.93417

变量2训练集数据的MAE为:10.6578

变量2测试集数据的MAE为:10.2048

变量2训练集数据的MBE为:-4.3999

变量2测试集数据的MBE为:-4.4601


以下三个问题,正在研究中,后续还会慢慢更新。


3.xgboost回归模型如何调参? ##

4.xgboost回归模型如何模拟预测新数据? ##

5.xgboost如何实现多分类预测。


目录
打赏
0
0
0
0
270
分享
相关文章
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
38 10
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
18天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
27 1
基于自混合干涉测量系统的线展宽因子估计算法matlab仿真
本程序基于自混合干涉测量系统,使用MATLAB2022A实现线展宽因子(a因子)估计算法仿真。通过对比分析自由载流子效应、带间跃迁、带隙收缩等因素对a因子的影响,揭示其物理机制。核心代码分别计算了不同效应对a因子的贡献,并绘制相应曲线进行可视化展示。自混合干涉测量技术利用激光反馈效应实现物体物理量测量,而线展宽因子描述了激光输出频率随功率变化的敏感程度,是研究半导体激光器特性的重要参数。该算法为光学测量和激光器研究提供了有效工具。
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
基于Astar的复杂栅格地图路线规划算法matlab仿真
本项目基于A*算法实现复杂栅格地图的路径规划,适用于机器人导航、自动驾驶及游戏开发等领域。通过离散化现实环境为栅格地图,每个栅格表示空间区域属性(如可通行性)。A*算法利用启发函数评估节点,高效搜索从起点到终点的近似最优路径。项目在MATLAB2022a中运行,核心程序包含路径回溯与地图绘制功能,支持障碍物建模和路径可视化。理论结合实践,该方法具有重要应用价值,并可通过技术优化进一步提升性能。
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问