【MATLAB第20期】基于matlab的Catboost多输入单输出回归预测模型 catboost-1.1.1版本

简介: 【MATLAB第20期】基于matlab的Catboost多输入单输出回归预测模型 catboost-1.1.1版本

基于matlab的Catboost多输入单输出回归预测模型 catboost-1.1.1版本


运行环境


windows10 matlab2020a

catboost版本:catboost-1.1.1


一、导入数据


采用3输入,1输出,共103组数据,其中80个数据训练,23个数据测试


%%  导入数据
res = xlsread('数据集.xlsx');
%%  划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 3)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 3)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);


输出数据曲线如下图所示:

二、数据归一化

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

三、建立catboost模型

fit1=table(Ypred1,'VariableNames',{'RawFormulaVal'});
fit2=table(Ypred2,'VariableNames',{'RawFormulaVal'});
writetable(fit1,'fit1.txt');
writetable(CD,'trainlabel.txt');
writetable(traindata,'traindata.txt');
command1 = 'catboost-1.1.1.exe fit % Catboost训练集拟合fit函数创建
status1 = system(command1)
writetable(fit2,'fit2.txt');
writetable(CD,'testlabel.txt');
writetable(testdata,'testdata.txt');
command2 = 'catboost-1.1.1.exe fit % Catboost测试集拟合fit函数创建
status2 = system(command2)

Catboost常见参数设置

%params={"iterations":43, %迭代次数
          %"learning_rate":.001,%初始学习率
          %"cat_features":cat_feature,
        %  "depth":8,
         % "verbose":50,
         % "od_type":"Iter",#overfit detector.
          %"od_wait":50,
          %"eval_metric":"AUC",
         % "random_seed":SEED}

四、预测仿真

Catboost模型将非线性回归的拟合结果进行预测拟合,得到残差值(预测结果-非线性回归拟合)

Pred1=A1.RawFormulaVal;% Catboost训练集残差拟合结果
Pred1=Ypred1+Pred1;%Catboost训练集预测结果
YPRED1 = mapminmax('reverse', Pred1, ps_output);%反归一
Y1=T_train;
Pred2=A2.RawFormulaVal;% Catboost测试集残差拟合结果
Pred2=Ypred2+Pred2;%Catboost测试集预测结果
YPRED2 = mapminmax('reverse', Pred2, ps_output);
Y2=T_test;


五、预测结果

六、代码下载链接获取

后台私聊回复“第20期”可获取下载链接。


相关文章
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
19天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
25天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
2月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
3月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
3月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
4月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。