【MATLAB第19期】基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型

简介: 【MATLAB第19期】基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型

基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型


前言


前面在【MATLAB第8期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的时间序列预测模型,即单输入数据时间序列预测,见本人CSDN主页。


前面在【MATLAB第10期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的多输入单输出回归预测模型思路框架,见本人CSDN主页。


思路


本文分别使用单列时间序列数据及多输入单输出数据,进行BO-CNNLSTM预测。贝叶斯原理及内容不多介绍。


1.时间序列预测模型


时间序列数据:单列数据

超参数优化:有大量的超参数可供调整和优化,使用贝叶斯优化来优化CNN-LSTM参数

optimVars = [
    optimizableVariable('NoFilter1',[8 64],'Type','integer')                         %卷积层1卷积核数量 
    optimizableVariable('NoFilter2',[8 64],'Type','integer')                         %卷积层2卷积核数量
    optimizableVariable('FilterSize1',[3 16],'Type','integer')                       %卷积层1卷积核大小
    optimizableVariable('FilterSize2',[3 16],'Type','integer')                       %卷积层2卷积核大小
    optimizableVariable('Lag',[3 9],'Type','integer')                                %时间滞后阶数范围                 
    optimizableVariable('MiniBatchSize',{'16' '32' '48' },'Type','categorical')      %批处理范围选择 
    optimizableVariable('learningrate',[1e-5 1e-1],'Type','real',"Transform","log")];%学习率优化选择

贝叶斯优化次数:10

贝叶斯优化结果:(参数简化,如最大运行时间仅设置为10*60)

测试集MAE=

1.3433

测试集RMSE=

1.9390


2.回归预测模型


使用多输入单输出数据

80%训练 20%测试

超参数优化:有大量的超参数可供调整和优化,使用贝叶斯优化来优化CNN-LSTM参数

%% 优化CNNLSTM结构参数


optimVars = [
    optimizableVariable('numHiddenUnits1',[50 200],'Type','integer')% LSTM第一层隐含层神经元数
    optimizableVariable('numHiddenUnits2',[50 200],'Type','integer')% LSTM第二层隐含层神经元数
    optimizableVariable('NoFilter1',[8 64],'Type','integer') %卷积层卷积核数量 
    optimizableVariable('FilterSize1',[3 16],'Type','integer')%卷积层卷积核大小
  ];

**


预测结果:

**


CNNLSTM训练集均方根误差(RMSE):3.2152

CNNLSTM训练集平均绝对误差(MAE):2.5149

CNNLSTM训练集平均相对百分误差(MAPE):5.0728%

CNNLSTM训练集R-square决定系数(R2):0.98159

CNNLSTM测试集均方根误差(RMSE):2.9023

CNNLSTM测试集平均绝对误差(MAE):2.1754

CNNLSTM测试集平均相对百分误差(MAPE):3.4288%

CNNLSTM测试集R-square决定系数(R2):0.96609

BO-CNNLSTM训练集均方根误差(RMSE):1.6549

BO-CNNLSTM训练集平均绝对误差(MAE):1.2913

BO-CNNLSTM训练集平均相对百分误差(MAPE):2.9743%

BO-CNNLSTM训练集R-square决定系数(R2):0.99484

BO-CNNLSTM测试集均方根误差(RMSE):2.4997

BO-CNNLSTM测试集平均绝对误差(MAE):2.098

BO-CNNLSTM测试集平均相对百分误差(MAPE):3.5159%

BO-CNNLSTM测试集R-square决定系数(R2):0.98186


目录
打赏
0
1
1
0
267
分享
相关文章
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
9月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
332 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
201 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
285 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章