【MATLAB第19期】基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型

简介: 【MATLAB第19期】基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型

基于贝叶斯Bayes算法优化CNN-LSTM长短期记忆网络的单列时间序列模型及多输入单输出回归预测模型


前言


前面在【MATLAB第8期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的时间序列预测模型,即单输入数据时间序列预测,见本人CSDN主页。


前面在【MATLAB第10期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的多输入单输出回归预测模型思路框架,见本人CSDN主页。


思路


本文分别使用单列时间序列数据及多输入单输出数据,进行BO-CNNLSTM预测。贝叶斯原理及内容不多介绍。


1.时间序列预测模型


时间序列数据:单列数据

超参数优化:有大量的超参数可供调整和优化,使用贝叶斯优化来优化CNN-LSTM参数

optimVars = [
    optimizableVariable('NoFilter1',[8 64],'Type','integer')                         %卷积层1卷积核数量 
    optimizableVariable('NoFilter2',[8 64],'Type','integer')                         %卷积层2卷积核数量
    optimizableVariable('FilterSize1',[3 16],'Type','integer')                       %卷积层1卷积核大小
    optimizableVariable('FilterSize2',[3 16],'Type','integer')                       %卷积层2卷积核大小
    optimizableVariable('Lag',[3 9],'Type','integer')                                %时间滞后阶数范围                 
    optimizableVariable('MiniBatchSize',{'16' '32' '48' },'Type','categorical')      %批处理范围选择 
    optimizableVariable('learningrate',[1e-5 1e-1],'Type','real',"Transform","log")];%学习率优化选择

贝叶斯优化次数:10

贝叶斯优化结果:(参数简化,如最大运行时间仅设置为10*60)

测试集MAE=

1.3433

测试集RMSE=

1.9390


2.回归预测模型


使用多输入单输出数据

80%训练 20%测试

超参数优化:有大量的超参数可供调整和优化,使用贝叶斯优化来优化CNN-LSTM参数

%% 优化CNNLSTM结构参数


optimVars = [
    optimizableVariable('numHiddenUnits1',[50 200],'Type','integer')% LSTM第一层隐含层神经元数
    optimizableVariable('numHiddenUnits2',[50 200],'Type','integer')% LSTM第二层隐含层神经元数
    optimizableVariable('NoFilter1',[8 64],'Type','integer') %卷积层卷积核数量 
    optimizableVariable('FilterSize1',[3 16],'Type','integer')%卷积层卷积核大小
  ];

**


预测结果:

**


CNNLSTM训练集均方根误差(RMSE):3.2152

CNNLSTM训练集平均绝对误差(MAE):2.5149

CNNLSTM训练集平均相对百分误差(MAPE):5.0728%

CNNLSTM训练集R-square决定系数(R2):0.98159

CNNLSTM测试集均方根误差(RMSE):2.9023

CNNLSTM测试集平均绝对误差(MAE):2.1754

CNNLSTM测试集平均相对百分误差(MAPE):3.4288%

CNNLSTM测试集R-square决定系数(R2):0.96609

BO-CNNLSTM训练集均方根误差(RMSE):1.6549

BO-CNNLSTM训练集平均绝对误差(MAE):1.2913

BO-CNNLSTM训练集平均相对百分误差(MAPE):2.9743%

BO-CNNLSTM训练集R-square决定系数(R2):0.99484

BO-CNNLSTM测试集均方根误差(RMSE):2.4997

BO-CNNLSTM测试集平均绝对误差(MAE):2.098

BO-CNNLSTM测试集平均相对百分误差(MAPE):3.5159%

BO-CNNLSTM测试集R-square决定系数(R2):0.98186


目录
打赏
0
1
1
0
270
分享
相关文章
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
28天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章

AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等