【MATLAB第12期】基于LSTM长短期记忆网络的多输入多输出回归预测模型思路框架,含滑动窗口, 预测未来,单步预测与多步预测对比,多步预测步数对预测结果影响分析

简介: 【MATLAB第12期】基于LSTM长短期记忆网络的多输入多输出回归预测模型思路框架,含滑动窗口, 预测未来,单步预测与多步预测对比,多步预测步数对预测结果影响分析

【MATLAB第12期】基于LSTM(RNN作为对比)长短期记忆网络的多输入多输出回归预测模型思路框架,含滑动窗口, 预测未来,单步预测与多步预测对比,多步预测步数对预测结果影响分析


更新:2022.11.5更新RNN模型,预测结果附后


一、数据说明


本文总共1400个数据 。滑动窗口为12,预测步数为100(预测1301-1400数据). 多步预测值为3 。


训练集输入样本数据格式: 128612 // 128612 输入 1286 *3输出

即: 样本1: 1-12 个数据 → 预测 13-15

样本2:2-13 个数据 →预测 14-16

样本1286:1286-1297 个数据 →预测1298:1300


测试集输入样本格式 10012 // 10012 输入 100*3输出

即: 样本1: 1289-1300 个数据 → 预测 1301-1303

样本2:1290-1301 个数据 → 预测 1302-1304

样本100:1388-1399 个数据 → 预测 1400-1402

%% 建立神经网络层
layers = [
    sequenceInputLayer(1,"Name","input")             % 输入特征数
    lstmLayer(20,"Name","lstm",'OutputMode','last')  % 隐藏单元
    dropoutLayer(0.1,"Name","drop")                  % 遗忘门
    fullyConnectedLayer(duobuyuce,"Name","fc")       % 全连接层
    regressionLayer("Name","regressionputput")];     % 回归输出
%% 定义训练参数
options = trainingOptions('adam', ...
    'MaxEpochs',200, ...                             % 迭代轮数
    'GradientThreshold',1, ...                       % 梯度阈值
    'InitialLearnRate',0.01, ...                     % 学习率
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...
    'LearnRateDropFactor',0.2, ...
    'Verbose',0, ...
    'MiniBatchSize',32,...                          % BatchSize批数量
    'Plots','training-progress');

二、多步预测分析


研究多步预测分别为1 / 2 /3时对应的预测效果

(解释说明:若为1时,前12个数据预测后第13步数据;若为2时,前12个数据预测后第14步数据;若为3时,前12个数据预测后第15步数据)


**单步逐步预测:**YPred_1:取测试集预测结果中,100个样本中每个样本分别预测的第一个值即 (1289-1399)→1301-1400(第100次预测时,样本100:1388-1399 个数据 → 预测 1400)


**双步逐步预测:**YPred_2:取测试集预测结果中,100个样本中每个样本分别预测的第二个值即 (1289-1399)→1302-1401(删去预测的第1401值) +YPred_1预测的第一个值 1301(第100次预测时,样本100:1388-1399 个数据 → 预测 1401)


**三步逐步预测:**YPred_3:取测试集预测结果中,100个样本中每个样本分别预测的第三个值即(1289-1399)→ 1303-1402 (删去预测的第1401-1402值)+YPred_1预测的前两个值 1301-1302(第100次预测时,样本100:1388-1399 个数据 → 预测 1402)


三、预测结果分析


YPred_1预测结果

MAE = 0.0659

RMSE = 0.0813

MAPE = 0.0073

R = 0.9779

用训练集最后的12个值预测未来100个值

YPred_2预测结果
MAE = 0.1013
RMSE = 0.1246
MAPE = 0.0112
R = 0.9483

用训练集最后的12个值预测未来100个值

YPred_3预测结果
MAE = 0.1452
RMSE = 0.1770
MAPE = 0.0161
R = 0.8956



四、结论


通过以上可以看出, 单步预测效果要比多步(间隔)预测好。


五、预测未来思路


*(目前这部分源码还没有案例,后期会更新)

*

我们可以增大多步预测数值,来预测未来结果 ,如前面所说 ,多步预测参数为3,滑动窗口为12时,可以通过输入1388-1399预测1400-1402 。那么输入1389-1400就可以预测到1403数据了 。


有两种思路:


第一种思路预测结果会较差,即用未来预测结果预测未来 ,即我用1390-1401(此时1401为预测结果)预测1402-1404, 1391-1402预测1403-1404…… 这种思路缺点是会造成误差积累, 影响数据特征处理,最后会逐步趋于一条直线。


第二种思路预测结果,即调大多步预测值,一般适合数据量足够,且呈周期性变化,且数据趋势没有明显异常情况。如要预测未来20个值,除了调整滑动窗口,还可以增大多步预测值,如滑动窗口保持不变,多步预测设置为10 ,即我用1389-1400预测 1401-1420 ,一步到位。

第二种思路优点是短期预测结果会更接近现实,缺点是调参困难,如滑动窗口设置合理性, 以及无法预测超长期数据 ,比如总共1400数据,你想预测未来1000个数据,如果历史数据基本保持一个趋势还好, 但如果数据曲线比较复杂,就会导致训练样本数不够,或者说不具备代表性。


六、RNN预测模型

RNN参数基本与LSTM保持一致

YPred_1预测结果:

YPred_2预测结果:

YPred_3预测结果:



七、获取方式


后台回复“LSTM多输入多输出”可获取下载方式

有偿望理解。

后续将在此链接永久更新预测未来的案例代码,以及自己调试参数的心得,拭目以待吧!

如果觉得本文对你有帮助的话,麻烦点个关注收藏,后期会出视频操作,对数据处理这块儿进行讲解。

































相关文章
|
7月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
163 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
6月前
|
机器学习/深度学习 数据采集 算法
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
340 0
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
204 0
|
5月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
140 1
|
8月前
|
机器学习/深度学习 数据采集 调度
bp神经网络电力系统短期负荷预测
bp神经网络电力系统短期负荷预测
317 60
|
5月前
|
机器学习/深度学习 数据采集 算法
基于VMD-LSTM的电力负荷预测研究(Matlab代码实现)
基于VMD-LSTM的电力负荷预测研究(Matlab代码实现)
352 0
|
5月前
|
监控 前端开发 安全
Netty 高性能网络编程框架技术详解与实践指南
本文档全面介绍 Netty 高性能网络编程框架的核心概念、架构设计和实践应用。作为 Java 领域最优秀的 NIO 框架之一,Netty 提供了异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。本文将深入探讨其 Reactor 模型、ChannelPipeline、编解码器、内存管理等核心机制,帮助开发者构建高性能的网络应用系统。
348 0
|
5月前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
252 0
|
5月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
137 0
|
5月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
239 0

热门文章

最新文章