m基于细菌觅食优化的DSR网络路由协议优化算法matlab仿真

简介: m基于细菌觅食优化的DSR网络路由协议优化算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

496407f23cf5356a3944bad2204beec4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fe303dcf50da4a8250ac8ffc123440d6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
29409ffa78a8af85d32e5032ef8c7e2b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
移动自组网(Mobile Ad Hoc Network,简称MANET)是一种无需基础设施支持的网络,它由一组移动的节点组成,这些节点可以自组织形成一个网络,实现数据的传输和共享。由于MANET是一种去中心化的网络,因此其路由协议的设计非常重要。目前,常用的路由协议包括基于距离向量的协议、基于链路状态的协议、基于位置的协议等。其中,基于距离向量的协议最为简单易实现,但存在收敛慢、路由环路等问题;基于链路状态的协议收敛速度快,但需要维护全局状态信息,开销较大;基于位置的协议只考虑节点位置信息,无法应对网络拓扑变化等挑战。因此,设计一种高效的路由协议对MANET的性能具有重要意义。

   细菌觅食优化算法(Bacterial Foraging Optimization,简称BFO)是一种基于生物学观察的优化算法,模拟细菌在觅食过程中的行为,通过对细菌的繁殖和迁移等过程进行优化,最终寻找到最优解。近年来,BFO算法在路由协议优化领域得到了广泛应用,并取得了良好的效果。

   本文将介绍一种基于细菌觅食优化的DSR(Dynamic Source Routing)网络路由协议优化算法,通过对DSR协议中路由缓存表中条目的选择进行优化,提高路由效率,降低网络延迟和能耗。

1、DSR路由协议简介

  DSR路由协议是一种基于源路由(Source Routing)的协议,其主要思想是每个节点维护一个路由缓存表,其中存储着到达其他节点的路由信息。当一个节点需要发送数据时,它会查询自己的路由缓存表,如果找到了相应的路由,则直接发送数据;否则,它会向周围节点发送路由请求(Route Request,简称RREQ),询问到目的节点的路由信息。当一个节点收到RREQ时,如果它有到目的节点的路由信息,则会向源节点发送路由回复(Route Reply,简称RREP);否则,它会向周围节点广播RREQ,以寻求其他节点的帮助。当RREP到达源节点时,源节点就可以通过缓存中的路由信息直接发送数据到目的节点。在DSR协议中,每个节点还可以维护一个路由维护表,用于定期清除失效的路由信息。

   DSR协议的优点是具有较好的可扩展性和适应性,能够适应节点移动、网络拓扑变化等多种场景。但是,由于DSR协议中节点需要查询路由缓存表和广播RREQ等操作,存在一定的路由开销和延迟,影响网络性能。因此,需要对DSR协议进行优化,提高路由效率。

2、基于细菌觅食优化的DSR路由协议优化算法

1.细菌觅食优化算法

   细菌觅食优化算法是一种基于生物学观察的优化算法,模拟细菌在觅食过程中的行为,通过不断迭代细菌的繁殖和迁移等过程,最终找到最优解。该算法的具体过程如下:

(1)初始化细菌群体,设置细菌的位置和营养值等参数;

(2)对每个细菌,根据当前位置计算其周围的营养浓度,根据一定规则(如随机游走、趋向梯度等)更新细菌的位置;

(3)根据细菌的营养值更新细菌的繁殖和死亡概率;

(4)随机选择两个细菌,根据其繁殖和死亡概率进行交叉和变异等操作,生成新的细菌群体;

(5)重复执行步骤2~4,直到满足终止条件(如达到最大迭代次数、收敛到一定精度等)。

细菌觅食优化算法的优点在于简单易实现、参数少、收敛速度较快等,适用于路由协议优化等领域。

2.基于细菌觅食优化的DSR路由协议优化算法

   基于细菌觅食优化的DSR路由协议优化算法的主要思想是通过优化路由缓存表中的条目选择,减少路由查询和维护的开销,提高路由效率。具体实现如下:

(1)定义优化目标:路由缓存表中的条目应尽量少,但能够满足到达其他节点的路由需求;

(2)初始化细菌群体:将路由缓存表中的每个条目看作一个细菌,每个细菌的位置代表当前缓存表中的某一个条目,每个细菌的营养值代表该条目被使用的频率;

(3)计算适应度函数:根据路由缓存表中的条目数和使用频率计算适应度函数,适应度函数越高表示该细菌对路由协议优化效果越好;

(4)更新细菌位置:根据细菌繁殖和死亡概率,以及一定的随机游走等规则,更新细菌的位置;

(5)交叉和变异操作:随机选择两个细菌,根据其繁殖和死亡概率进行交叉和变异操作,生成新的细菌群体;

(6)更新路由缓存表:根据优化后的细菌群体,选择营养值最高的条目作为路由缓存表中的条目,并清除其他条目;

(7)重复执行步骤3~6,直到满足终止条件。

在该算法中,适应度函数的定义对优化效果具有重要影响。一种常用的适应度函数定义如下:
f(x) = \frac{1}{c_1 \times n + c_2 \times f_u}

其中,c_1和c_2是常数,$n$表示路由缓存表中的条目数,$f_u$表示所有条目的使用频率之和。该适应度函数的含义是:当路由缓存表中的条目数较少,但使用频率较高时,适应度函数较大。

3.MATLAB核心程序
```for ni = 1:length(Nnodes);
ni
%节点个数
Nnode = Nnodes(ni);

Delays2 = zeros(1,MTKL);%端到端时延
consmp2 = zeros(1,MTKL);%网络拓扑控制开销  
Srate2  = zeros(1,MTKL);%数据包递交率

for jn = 1:MTKL
    X = rand(1,Nnode)*SCALE;  
    Y = rand(1,Nnode)*SCALE; 
    T = rand(1,Nnode); 
    Delays = zeros(Times,1);%端到端时延
    consmp = zeros(Times,1);%网络拓扑控制开销  
    Srate  = zeros(Times,1);%数据包递交率
    for t = 1:Times
        if t == 1
           X = X;
           Y = Y;
        else
           %节点发送随机的移动
           X = X + Vmax*rand;
           Y = Y + Vmax*rand;
        end
        %network topology 
        dmatrix= zeros(Nnode,Nnode);
        matrix = zeros(Nnode,Nnode);
        Trust  = zeros(Nnode,Nnode);
        for i = 1:Nnode 
            for j = 1:Nnode 
                Dist = sqrt((X(i) - X(j))^2 + (Y(i) - Y(j))^2); 
                %a link; 
                if Dist <= Radius 
                   matrix(i,j)  = 1;   
                   Trust(i,j)   = 1-((T(i)+T(j))/2);
                   dmatrix(i,j) = Dist; 
                else 
                   matrix(i,j)  = inf; 
                   Trust(i,j)   = inf; 
                   dmatrix(i,j) = inf; 
                end; 
            end; 
        end; 

```

相关文章
|
16天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
127 3
|
21天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
14天前
|
机器学习/深度学习 数据可视化 网络架构
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
PINNs训练难因多目标优化易失衡。通过设计硬约束网络架构,将初始与边界条件内嵌于模型输出,可自动满足约束,仅需优化方程残差,简化训练过程,提升稳定性与精度,适用于气候、生物医学等高要求仿真场景。
113 4
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
12天前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
136 5
|
10天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
21天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
138 14
|
16天前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
16天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
16天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)

热门文章

最新文章