m基于细菌觅食优化的DSR网络路由协议优化算法matlab仿真

简介: m基于细菌觅食优化的DSR网络路由协议优化算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

496407f23cf5356a3944bad2204beec4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fe303dcf50da4a8250ac8ffc123440d6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
29409ffa78a8af85d32e5032ef8c7e2b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
移动自组网(Mobile Ad Hoc Network,简称MANET)是一种无需基础设施支持的网络,它由一组移动的节点组成,这些节点可以自组织形成一个网络,实现数据的传输和共享。由于MANET是一种去中心化的网络,因此其路由协议的设计非常重要。目前,常用的路由协议包括基于距离向量的协议、基于链路状态的协议、基于位置的协议等。其中,基于距离向量的协议最为简单易实现,但存在收敛慢、路由环路等问题;基于链路状态的协议收敛速度快,但需要维护全局状态信息,开销较大;基于位置的协议只考虑节点位置信息,无法应对网络拓扑变化等挑战。因此,设计一种高效的路由协议对MANET的性能具有重要意义。

   细菌觅食优化算法(Bacterial Foraging Optimization,简称BFO)是一种基于生物学观察的优化算法,模拟细菌在觅食过程中的行为,通过对细菌的繁殖和迁移等过程进行优化,最终寻找到最优解。近年来,BFO算法在路由协议优化领域得到了广泛应用,并取得了良好的效果。

   本文将介绍一种基于细菌觅食优化的DSR(Dynamic Source Routing)网络路由协议优化算法,通过对DSR协议中路由缓存表中条目的选择进行优化,提高路由效率,降低网络延迟和能耗。

1、DSR路由协议简介

  DSR路由协议是一种基于源路由(Source Routing)的协议,其主要思想是每个节点维护一个路由缓存表,其中存储着到达其他节点的路由信息。当一个节点需要发送数据时,它会查询自己的路由缓存表,如果找到了相应的路由,则直接发送数据;否则,它会向周围节点发送路由请求(Route Request,简称RREQ),询问到目的节点的路由信息。当一个节点收到RREQ时,如果它有到目的节点的路由信息,则会向源节点发送路由回复(Route Reply,简称RREP);否则,它会向周围节点广播RREQ,以寻求其他节点的帮助。当RREP到达源节点时,源节点就可以通过缓存中的路由信息直接发送数据到目的节点。在DSR协议中,每个节点还可以维护一个路由维护表,用于定期清除失效的路由信息。

   DSR协议的优点是具有较好的可扩展性和适应性,能够适应节点移动、网络拓扑变化等多种场景。但是,由于DSR协议中节点需要查询路由缓存表和广播RREQ等操作,存在一定的路由开销和延迟,影响网络性能。因此,需要对DSR协议进行优化,提高路由效率。

2、基于细菌觅食优化的DSR路由协议优化算法

1.细菌觅食优化算法

   细菌觅食优化算法是一种基于生物学观察的优化算法,模拟细菌在觅食过程中的行为,通过不断迭代细菌的繁殖和迁移等过程,最终找到最优解。该算法的具体过程如下:

(1)初始化细菌群体,设置细菌的位置和营养值等参数;

(2)对每个细菌,根据当前位置计算其周围的营养浓度,根据一定规则(如随机游走、趋向梯度等)更新细菌的位置;

(3)根据细菌的营养值更新细菌的繁殖和死亡概率;

(4)随机选择两个细菌,根据其繁殖和死亡概率进行交叉和变异等操作,生成新的细菌群体;

(5)重复执行步骤2~4,直到满足终止条件(如达到最大迭代次数、收敛到一定精度等)。

细菌觅食优化算法的优点在于简单易实现、参数少、收敛速度较快等,适用于路由协议优化等领域。

2.基于细菌觅食优化的DSR路由协议优化算法

   基于细菌觅食优化的DSR路由协议优化算法的主要思想是通过优化路由缓存表中的条目选择,减少路由查询和维护的开销,提高路由效率。具体实现如下:

(1)定义优化目标:路由缓存表中的条目应尽量少,但能够满足到达其他节点的路由需求;

(2)初始化细菌群体:将路由缓存表中的每个条目看作一个细菌,每个细菌的位置代表当前缓存表中的某一个条目,每个细菌的营养值代表该条目被使用的频率;

(3)计算适应度函数:根据路由缓存表中的条目数和使用频率计算适应度函数,适应度函数越高表示该细菌对路由协议优化效果越好;

(4)更新细菌位置:根据细菌繁殖和死亡概率,以及一定的随机游走等规则,更新细菌的位置;

(5)交叉和变异操作:随机选择两个细菌,根据其繁殖和死亡概率进行交叉和变异操作,生成新的细菌群体;

(6)更新路由缓存表:根据优化后的细菌群体,选择营养值最高的条目作为路由缓存表中的条目,并清除其他条目;

(7)重复执行步骤3~6,直到满足终止条件。

在该算法中,适应度函数的定义对优化效果具有重要影响。一种常用的适应度函数定义如下:
f(x) = \frac{1}{c_1 \times n + c_2 \times f_u}

其中,c_1和c_2是常数,$n$表示路由缓存表中的条目数,$f_u$表示所有条目的使用频率之和。该适应度函数的含义是:当路由缓存表中的条目数较少,但使用频率较高时,适应度函数较大。

3.MATLAB核心程序
```for ni = 1:length(Nnodes);
ni
%节点个数
Nnode = Nnodes(ni);

Delays2 = zeros(1,MTKL);%端到端时延
consmp2 = zeros(1,MTKL);%网络拓扑控制开销  
Srate2  = zeros(1,MTKL);%数据包递交率

for jn = 1:MTKL
    X = rand(1,Nnode)*SCALE;  
    Y = rand(1,Nnode)*SCALE; 
    T = rand(1,Nnode); 
    Delays = zeros(Times,1);%端到端时延
    consmp = zeros(Times,1);%网络拓扑控制开销  
    Srate  = zeros(Times,1);%数据包递交率
    for t = 1:Times
        if t == 1
           X = X;
           Y = Y;
        else
           %节点发送随机的移动
           X = X + Vmax*rand;
           Y = Y + Vmax*rand;
        end
        %network topology 
        dmatrix= zeros(Nnode,Nnode);
        matrix = zeros(Nnode,Nnode);
        Trust  = zeros(Nnode,Nnode);
        for i = 1:Nnode 
            for j = 1:Nnode 
                Dist = sqrt((X(i) - X(j))^2 + (Y(i) - Y(j))^2); 
                %a link; 
                if Dist <= Radius 
                   matrix(i,j)  = 1;   
                   Trust(i,j)   = 1-((T(i)+T(j))/2);
                   dmatrix(i,j) = Dist; 
                else 
                   matrix(i,j)  = inf; 
                   Trust(i,j)   = inf; 
                   dmatrix(i,j) = inf; 
                end; 
            end; 
        end; 

```

相关文章
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
17天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
16天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
17天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
17天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
13 1
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码