最优化--最大似然估计--最优化理论介绍

简介: 最优化--最大似然估计--最优化理论介绍

目录


最大似然估计


概念


最大似然估计原理


应用


最优化理论介绍


最优化问题


迭代求解




最大似然估计


概念


最大似然估计(Maximum Likelihood Estimation,MLE)是统计学中一种常用的参数估计方法。它基于观测数据,通过寻找最大化参数的似然函数来估计参数的值。


最大似然估计法是由德国数学家高斯在1821年提出的 。 然而,这个方法常归功于英国统计学家费歇。因为费歇在1922年重新发现了这一方法,并首先研究了这种方法的一些性质。

15.png

在最大似然估计中,假设我们有一组观测数据,我们希望通过这些数据来估计一个未知参数的值。我们首先要建立一个参数化模型,该模型的形式取决于我们要估计的参数。然后,我们通过最大化似然函数来找到使观测数据出现的概率最大的参数值。


似然函数是指给定观测数据的条件下,参数取某个值的概率密度函数(连续型数据)或概率质量函数(离散型数据)。最大似然估计的核心思想是寻找使观测数据出现的概率最大化的参数值,也就是找到使似然函数取得最大值的参数。


具体而言,我们假设观测数据是独立同分布的,即每个观测值的产生不受其他观测值的影响,并且来自同一个分布。在最大似然估计中,我们将观测数据视为固定的,而参数是可变的。通过最大化似然函数,我们可以找到最有可能产生观测数据的参数值。


最大似然估计原理


最大似然估计通过已知结果去反推最大概率导致该结果的参数。


比如,现在已经得到样本值a1,a2,...an了,这表明取到这一样本值的概率比较大,而取到其


他样本值概率比较小。它提供了一种给定观察数据来评估模型参数的方法,即 “模型已定,


参数未知”,通过若干次试验,观察其结果,利用实验结果得到某些参数值能够使样本出现


的概率为最大。

16.png

应用


1.参数估计:最大似然估计用于估计参数的值。通过最大化似然函数,我们可以找到在给定模型和观测数据下,最有可能生成观测数据的参数值。最大似然估计提供了一种基于数据的方法来推断未知参数的取值。


2.假设检验:最大似然估计可以用于假设检验。我们可以通过比较两个具有不同参数值的模型的似然函数,来评估哪个模型更符合观测数据。通常,我们会计算似然比(likelihood ratio)作为比较的指标。较高的似然比表明一个模型相对于另一个模型更好地解释观测数据。


3.模型选择:最大似然估计可以用于选择最合适的模型。假设我们有多个具有不同参数的模型,我们可以通过比较它们的似然函数或似然比来确定哪个模型最能解释观测数据。最大似然估计提供了一种准则来选择最优模型。


4.预测与推断:最大似然估计可以用于预测和推断。通过估计模型的参数,我们可以使用模型来进行预测和推断。例如,在线性回归中,我们可以使用最大似然估计来估计回归系数,然后利用估计的模型进行未来观测值的预测。


最优化理论介绍

17.png

最优化问题


最优化问题就是求 f(x)的最大值或者最小值,往往求最小值(比如损失函数的最小值),然

后找出对应的模型参数

18.png

比如上面这个损失函数的图像,有两个局部最小值(也叫极小值),我们需要找到的是最小

值,于是就分为两个步骤:


  1. 1.先找到所有的局部最小值

  2. 2.对所有的局部最小值再次进行比较,找到一个最小的,就是全局最小值了

  3. 3.找出全局最小值位置对应的模型参数

迭代求解


如何从当前一个点移动到下一个点上面去,也就是怎么从 x~k~ 到 x~k+1~,迭代法是我们计

算数学中经常采用的一种方法。迭代的关键就是选择合适的搜索方向, 然后再确定步长,从

当前位置移动到下一个位置,判断损失函数是否达到最小值,从而找到对应的模型参数。

19.png



相关文章
|
9月前
|
SQL BI
分页查询和分页查询的性能优化
分页查询和分页查询的性能优化
|
机器学习/深度学习 自然语言处理 分布式计算
知识图谱(Knowledge Graph)之综述理解
知识图谱(Knowledge Graph)之综述理解
1276 0
知识图谱(Knowledge Graph)之综述理解
|
3月前
|
SQL 存储 关系型数据库
PostgreSQL窗口函数避坑指南:如何让复杂分析查询提速300%?
本文基于真实企业级案例,深入剖析PostgreSQL窗口函数的执行原理与性能陷阱,提供8大优化策略。通过定制索引、分区裁剪、内存调优及并行处理等手段,将分钟级查询压缩至秒级响应。结合CTE分阶段计算与物化视图技术,解决海量数据分析中的瓶颈问题。某金融客户实践表明,风险分析查询从47秒降至0.8秒,效率提升5800%。文章附带代码均在PostgreSQL 15中验证,助您高效优化SQL性能。
135 0
|
11月前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
220 0
|
SQL 关系型数据库 MySQL
AnalyticDB MySQL
【8月更文挑战第30天】AnalyticDB MySQL
281 4
|
索引 Python
【Python】已解决:elasticsearch.exceptions.RequestError: TransportError(400, ‘search_phase_execution_exc
【Python】已解决:elasticsearch.exceptions.RequestError: TransportError(400, ‘search_phase_execution_exc
692 0
|
开发框架 负载均衡 Java
Spring boot与Spring cloud之间的关系
总之,Spring Boot和Spring Cloud之间的关系是一种构建和扩展的关系,Spring Boot提供了基础,而Spring Cloud在此基础上提供了分布式系统和微服务架构所需的扩展和工具。
209 4
Spring boot与Spring cloud之间的关系
|
机器学习/深度学习 算法 数据挖掘
【机器学习】各大模型原理简介
【机器学习】各大模型原理简介
697 2
|
存储 人工智能 运维
作业帮云原生降本增效实践之路
目前,作业帮已经和阿里云有一个关于 AEP 的 tair 方案的结合,在新的一年希望我们有更大规模的落地。文章里讲得比较多的是关于降本做的一些技术改进,其实在降本增效这里面还有很大一块工作量是运营,成本运营我们也通过自动化实现了平台化,未来我们将会进一步向 BI 化、AI 化去演进。
858 66
作业帮云原生降本增效实践之路