m基于matlab的无线自组网性能仿真,包括端到端时延,吞吐量,初入网时间,迟入网时间,网络建立时间

简介: m基于matlab的无线自组网性能仿真,包括端到端时延,吞吐量,初入网时间,迟入网时间,网络建立时间

1.算法仿真效果
matlab2022a仿真结果如下:

23b0e3730b13c405160e04b233e27383_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
cc10a47eb32cec4aaf6926adbbbb2123_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fa2e8e5ffafd5a096d13528f5f71ccf4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
45bc188b21dc1dfa10cdbe50578bea1f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
无线自组网(Wireless Ad Hoc Network,简称WANET)是一种无需基础设施支持的网络,它由一组移动的无线节点组成,这些节点可以自组织形成一个网络,实现数据的传输和共享。由于WANET是一种去中心化的网络,因此其性能受到节点移动、信道状态、路由算法等多种因素的影响。为了评估WANET的性能,需要进行性能仿真来模拟实际网络环境下的数据传输和节点行为。

    从端到端时延、吞吐量、初入网时间、迟入网时间和网络建立时间等方面详细介绍无线自组网性能仿真。

一、端到端时延

   端到端时延是指从源节点发送数据到目的节点接收到数据所需的总时间,包括数据传输时间、排队时间、传输时延、处理时延等。在WANET中,端到端时延受到多种因素的影响,如节点的移动速度、信道状态、路由算法等。

二、吞吐量

   吞吐量是指网络中单位时间内能够传输的数据量。在WANET中,节点的移动和信道状态的变化会影响网络的吞吐量。为了评估WANET的吞吐量性能,需要进行基于仿真的实验。常用的仿真工具包括NS-3、Omnet++等。在仿真中,需要设置合适的节点移动速度、信道参数、路由协议等参数,以模拟实际网络环境下节点的行为。通过收集仿真数据,可以计算出不同场景下的平均吞吐量、吞吐量分布等指标,评估WANET的性能。

   对于无线自组网而言,有一种常见的情况是由于信道状态变化或节点移动导致网络分割,从而降低网络吞吐量。因此,在仿真中需要考虑这种网络分割情况,以更全面地评估WANET的吞吐量性能。

三、初入网时间

  初入网时间是指一个节点加入WANET后,能够与其他节点正常通信的时间。在WANET中,节点加入网络需要进行网络发现、路由建立等多个步骤,这些步骤会影响节点初入网的时间。

四、迟入网时间

   迟入网时间是指一个节点在WANET中重新加入网络后,能够与其他节点正常通信的时间。在WANET中,节点重新加入网络需要进行网络发现、路由建立等多个步骤,这些步骤会影响节点迟入网的时间。

五、网络建立时间

    网络建立时间是指整个WANET从无到有建立起来所需的时间。在WANET中,网络建立需要进行节点发现、路由建立、网络拓扑构建等多个步骤,这些步骤会影响网络建立的时间。

    总之,无线自组网性能仿真是评估WANET性能的重要手段,通过端到端时延、吞吐量、初入网时间、迟入网时间和网络建立时间等指标的评估,可以帮助研究人员优化WANET的设计和性能,提高其应用效果。同时,需要注意在仿真中设置合适的场景和参数,以更准确地评估WANET性能。

3.MATLAB核心程序
``` N = 15;
tdrift= tclkTslotN;
%融合组网
%接收节点信息进行帧检测
%检测是否同步
flag = 0;
Tss = [];
Tee = [];
Delays = [];
ixk = 0;
while ixk<=length(paths)
ixk = ixk+1;
frame1D2= frame1D + randn(size(frame1D));
yy = xcorr(frame1D2(1:end-10000),PN1);
yy2 = yy;
pnx = find(yy2>100);
if isempty(pnx) == 0;
%建立动态时延关系表
for ij = 1:length(ttra2)
Delays(ij) = ttra3+ttra2(ij) + Tslot + tdrift;
end
%确定参考节点
IDrefS = idx1;
IDrefD = idx2;
%广播参考节点
TimeS = (ixk+2+0.2*rand);%发送点的时间,设置随机发送时间
%更新节点时间%完成更新
TimeD = TimeS + [sum(Delays)];
flag = 1;
else
%没检测到,不做处理
TimeS = 0;
TimeD = 0;
Delays= 0;
flag = 0;
end
Tss = [Tss,TimeS];
Tee = [Tee,TimeD];
end

    %端到端时延
    TimeD2D(jj)  = sum(Delays);
    %网络吞吐量与带宽,跳数相关
    th           = BW/Nhops;
    Throughput0(jj)= th/1e3;%转换为Kbits
    %初始入网时间
    Time1st(jj)  = mean(Tss);
    %迟入网时间
    TimeFst(jj)  = mean(Tee);
    %网络建立时间
    Timeset(jj)  = mean(Tee)+mean(Tss);
end
TimeD2D_(ii)    =mean(TimeD2D);
Throughput0_(ii)=mean(Throughput0);
Time1st_(ii)=mean(Time1st);
TimeFst_(ii)=mean(TimeFst);
Timeset_(ii)=mean(Timeset);

end

figure;
plot(Nnodes,TimeD2D_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('端到端时延(ms)');

figure;
plot(Nnodes,Throughput0_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('网络吞吐量(Kbps)');

figure;
plot(Nnodes,Time1st,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('初始入网时间(s)');
ylim([0.8*min(Time1st
),1.2*max(Time1st_)]);

figure;
plot(Nnodes,TimeFst_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('迟入网时间(s)');

figure;
plot(Nnodes,Timeset_,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
grid on
xlabel('节点数量');
ylabel('网络建立时间(s)');

```

相关文章
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法
基于排队理论的客户结账等待时间MATLAB模拟仿真
本程序基于排队理论,使用MATLAB2022A模拟客户结账等待时间,分析平均队长、等待时长、不能结账概率、损失顾客数等关键指标。核心算法采用泊松分布和指数分布模型,研究顾客到达和服务过程对系统性能的影响,适用于银行、超市等多个领域。通过仿真,优化服务效率,减少顾客等待时间。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
102 65
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。

热门文章

最新文章