(附源码)基于sklearn的多种机器学习模型在降水降尺度中的应用(KNN\LR\RF\Ada\Xg\GBDT)2

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
MSE Nacos 企业版免费试用,1600元额度,限量50份
简介: (附源码)基于sklearn的多种机器学习模型在降水降尺度中的应用(KNN\LR\RF\Ada\Xg\GBDT)2

3.  数据预处理

3.1 scaling 特征项(统一量纲标准化)

# 拆分特征项和目标项
feature = data.iloc[:, 1:14]  # 拆分出特征项
target = data.iloc[:, 0]  # 拆分出目标项
# 实例化一个标准器
scaler = RobustScaler()
# 将数据标准化
feature = scaler.fit_transform(feature)
feature = pd.DataFrame(feature, columns=['CAr__', 'PET_a', 'PRCP_a', 'TMP_a', 'WET_a', 'G_ET_', 'G_PRCP_',
       'G_Qs_', 'G_Qsb_', 'G_TWSC_', 'dem90mca', 'Lat', 'Long'])

看看(检查)量纲之后的部分数据

feature.head()

输出结果:



3.2 数据集划分

feature_train, feature_test, target_train, target_test = train_test_split(feature, target)

看看(检查)划分好的数据

feature.head()

输出结果:



3. RF模型训练

看到下面的注释了,那是我经过参数寻优之后的pycharm给出的最佳参数(训练了10h+),但是实际上我又用默认参数进行了模型训练,结果准确率还更高了点。我nm🐎离谱(算了)

# rf = RandomForestRegressor(max_depth=9, max_features=0.75, min_samples_leaf=2,
#                       min_samples_split=3, n_estimators=500, n_jobs=-1)
rf = RandomForestRegressor()
"""超参数筛选:RandomForestRegressor(max_depth=9, max_features=0.75, min_samples_leaf=2,
                      min_samples_split=3, n_estimators=500, n_jobs=-1)"""
rf.fit(feature_train, target_train)
print(rf.score(feature_test, target_test))

输出结果(可以发现准确率0.9843...还是比较高的):



这是我参数寻优的代码:



当然,你在训练完成(上面的rf.fit()之后加上保存模型的代码)之后可以保存你的训练模型.这里简单给下我的。



4. 模型评估

4.1 包(当然你可以在最前面把包都给调好)

import joblib  # 加载模型
from sklearn.metrics import explained_variance_score  # 回归方差(可解释方差)
from sklearn.metrics import mean_absolute_error  # 平均绝对误差 MAE
from sklearn.metrics import mean_squared_error  # 均方误差 MSE   好像没有均方根误差 RMSE
from sklearn.metrics import mean_squared_log_error  # 均值平方对数误差(MSLE, Mean Squared Logarithmic Error)
from sklearn.metrics import median_absolute_error  # 中值绝对误差
from sklearn.metrics import r2_score  # R平方值
from sklearn.preprocessing import RobustScaler  # 标准器
from sklearn.model_selection import train_test_split  # 数据集划分
import pandas as pd
import numpy as np

4.2 得到相关评估标准

# 预测
target_pre = rf.predict(feature_test)
# 模型评估
score = rf.score(feature_test, target_test)
print('预测的正确率:\n', score)
EVS = explained_variance_score(target_test, target_pre)
print('回归方差:\n', EVS)
MSE = mean_squared_error(target_test, target_pre)
print('均方误差:\n', MSE)
MAE = mean_absolute_error(target_test, target_pre)
print('平均绝对值误差:\n', MAE)
MSLE = mean_squared_log_error(target_test, target_pre)
print('均值平方对数误差:\n', MSLE)
median = median_absolute_error(target_test, target_pre)
print('中值绝对误差:\n', median)
r2 = r2_score(target_test, target_pre)
print('R决定系数:\n', r2)
# print('最优模型:\n', rf.best_estimator_)
# print('最优参数:\n', rf.best_params_)
print('各特征值权重:\n', rf.feature_importances_)


输出结果:



5. 题外话 (其它模型:KNN\线性回归\DT\RF\Bagging(DT)\GBDT\Adaboost\Xgboost\Voting投票器)

5.1 包

from sklearn.neighbors import KNeighborsRegressor  # K邻近模型
from sklearn.linear_model import LinearRegression  # 线性回归模型
from sklearn.tree import DecisionTreeRegressor  # 决策树模型
from sklearn.ensemble import RandomForestRegressor  # 随机森林模型
from sklearn.ensemble import BaggingRegressor  # bagging模型
from sklearn.ensemble import GradientBoostingRegressor  # 梯度决策树模型/GBDT
from sklearn.ensemble import AdaBoostRegressor  # Ada模型
from xgboost import XGBRFRegressor  # Xgboost模型
from sklearn.ensemble import VotingRegressor  # 投票器

5.2 模型训练

5.2.1 准备工作

# 传统模型
knn = KNeighborsRegressor()
lin = LinearRegression()
log = LogisticRegression()
dt = DecisionTreeRegressor()
# bagging模型
rf = RandomForestRegressor()
bag = BaggingRegressor()
# boost模型
gbdt = GradientBoostingRegressor(loss='squared_error')
ada_dt = AdaBoostRegressor(base_estimator=dt)
ada_lin = AdaBoostRegressor(base_estimator=lin)
xg = XGBRFRegressor()
# 投票器
knn_reg = KNeighborsRegressor()
dt_reg = DecisionTreeRegressor()
rf_reg = RandomForestRegressor()
ada_dt_reg = AdaBoostRegressor(base_estimator=dt)
vote = VotingRegressor(estimators=[('rf_reg', rf_reg), ('ada_dt_reg',  ada_dt_reg)])
# stacking模型
stack1_knn = KNeighborsRegressor()
stack1_dt = DecisionTreeRegressor()
stack1_rf = RandomForestRegressor()
stack1_bag = BaggingRegressor()
stack1_gbdt = GradientBoostingRegressor(loss='squared_error')
stack1_ada_dt = AdaBoostRegressor(base_estimator=dt)
stack1_xg = XGBRFRegressor()
stack_model = [stack1_knn, stack1_dt, stack1_rf, stack1_bag, stack1_gbdt, stack1_ada_dt, stack1_xg]
stack2_rf = RandomForestRegressor(n_estimators=500, oob_score=True)
model = [knn, lin, dt, rf, bag, gbdt, ada_dt, ada_lin, xg, vote, stack2_rf]
model_label = ['knn', 'lin', 'dt', 'rf', 'bag', 'gbdt', 'ada_dt', 'ada_lin', 'xg', 'vote', 'stack2_rf']
assess_label = ['准确率(score)', '回归方差(EVS)', '均方误差(MSE)', '平均绝对值误差(MAE)',
                '中值绝对误差', 'R2决定系数(R2)']
comparion = pd.DataFrame(index=model_label, columns=assess_label)

展示一下:

comparion

输出结果(还没开始往里面输入,所以均为NaN):



5.2.2 开始各个模型的训练

这里我单独输出了RF的各个特征项权重的图以及一些其它信息。

另外由于stacking模型的特殊性,我没有将其的各个评估标准输出到comparion中,因为这是没有意义的。而只是输出了它的准确率(它的准确率几乎是最高的)

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
for estimator_index, estimator in enumerate(model):
    if estimator is knn:
        estimator.fit(feature_train, target_train.astype('int'))
    elif estimator is stack2_rf:
        # 训练模型
        feature_train1, feature_test1, target_train1,target_test1 = train_test_split(feature_train, target_train)
        for stack_estimator in stack_model:
            stack_estimator.fit(feature_train, target_train)
        # 创造预测值存储器
        target_stack_pre = np.empty((len(feature_test), len(stack_model)), dtype=np.float64)
        # 预测
        for stack_estimator_index, stack_estimator in enumerate(stack_model):
            target_stack_pre[:, stack_estimator_index] = stack_estimator.predict(feature_test)
        # 第二层模型训练
        estimator.fit(target_stack_pre, target_test)
        print('Stacking模型score:\t', estimator.oob_score_)
        break
    else:
        estimator.fit(feature_train, target_train)
    print(estimator_index)
    # 预测target
    target_pre = estimator.predict(feature_test)
    # 准确率
    score = estimator.score(feature_test, target_test)
    # 回归方差
    EVS = explained_variance_score(target_test, target_pre)
    # 均方误差
    MSE = mean_squared_error(target_test, target_pre)
    # 均方绝对值误差
    MAE = mean_absolute_error(target_test, target_pre)
    # 均值平均对数误差
#     MSLE = mean_squared_log_error(target_test, target_pre)
    # 中值绝对值误差
    median = median_absolute_error(target_test, target_pre)
    # R2决定系数
    r2 = r2_score(target_test, target_pre)
    # 集合
#     assess = [score, EVS, MSE, MAE, MSLE, median, r2]
    assess = [score, EVS, MSE, MAE, median, r2]
    if estimator is rf:
        fuck = estimator.feature_importances_
        print(data_cols)
        print(fuck)
        fg, ax = plt.subplots()
        sns.barplot(x=data_cols, y=fuck)
        ax.set_title('随机森林模型下的特征项重要性')
        plt.show()
    # chart
    for model_assess_index, model_assess in enumerate(assess):
        comparion.iloc[estimator_index, model_assess_index] = model_assess


输出结果:



5.2.3 输出结果展示

comparion = comparion.transpose()
comparion.transpose()

输出结果:



还有一些丑的要命的图:

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
for i in range(8):
    plt.figure(figsize=(20., 8), dpi=100)
    sns.barplot(x=comparion.columns, y=comparion.iloc[i, :], palette='Accent')
    plt.show()

输出结果(不再细致展示了):



如果有问题,欢迎一起探讨.

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
0
0
0
10
分享
相关文章
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
PAI 重磅发布模型权重服务,大幅降低模型推理冷启动与扩容时长
阿里云人工智能平台PAI 平台推出模型权重服务,通过分布式缓存架构、RDMA高速传输、智能分片等技术,显著提升大语言模型部署效率,解决模型加载耗时过长的业界难题。实测显示,Qwen3-32B冷启动时间从953秒降至82秒(降幅91.4%),扩容时间缩短98.2%。
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
MiniMax公司6月17日推出4560亿参数大模型M1,采用混合专家架构和闪电注意力机制,支持百万级上下文处理,高效的计算特性使其特别适合需要处理长输入和广泛思考的复杂任务。阿里云PAI-ModelGallery现已接入该模型,提供一键部署、API调用等企业级解决方案,简化AI开发流程。
DistilQwen-ThoughtX 蒸馏模型在 PAI-ModelGallery 的训练、评测、压缩及部署实践
通过 PAI-ModelGallery,可一站式零代码完成 DistilQwen-ThoughtX 系列模型的训练、评测、压缩和部署。
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
377 12
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
147 7
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
487 6
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问