NTU、上海AI Lab整理300+论文:基于Transformer的视觉分割最新综述出炉

简介: NTU、上海AI Lab整理300+论文:基于Transformer的视觉分割最新综述出炉


SAM (Segment Anything )作为一个视觉的分割基础模型,在短短的 3 个月时间吸引了很多研究者的关注和跟进。如果你想系统地了解 SAM 背后的技术,并跟上内卷的步伐,并能做出属于自己的 SAM 模型,那么接下这篇 Transformer-Based 的 Segmentation Survey 是不容错过!近期,南洋理工大学和上海人工智能实验室几位研究人员写了一篇关于 Transformer-Based 的 Segmentation 的综述,系统地回顾了近些年来基于 Transformer 的分割与检测模型,调研的最新模型截止至今年 6 月!同时,综述还包括了相关领域的最新论文以及大量的实验分析与对比,并披露了多个具有广阔前景的未来研究方向!


视觉分割旨在将图像、视频帧或点云分割为多个片段或组。这种技术具有许多现实世界的应用,如自动驾驶、图像编辑、机器人感知和医学分析。在过去的十年里,基于深度学习的方法在这个领域取得了显著的进展。最近,Transformer 成为一种基于自注意力机制的神经网络,最初设计用于自然语言处理,在各种视觉处理任务中明显超越了以往的卷积或循环方法。具体而言,视觉 Transformer 为各种分割任务提供了强大、统一甚至更简单的解决方案。本综述全面概述了基于 Transformer 的视觉分割,总结了最近的进展。首先,本文回顾了背景,包括问题定义、数据集和以往的卷积方法。接下来,本文总结了一个元架构,将所有最近的基于 Transformer 的方法统一起来。基于这个元架构,本文研究了各种方法设计,包括对这个元架构的修改和相关应用。此外,本文还介绍了几个相关的设置,包括 3D 点云分割、基础模型调优、域适应分割、高效分割和医学分割。此外,本文在几个广泛认可的数据集上编译和重新评估了这些方法。最后,本文确定了这个领域的开放挑战,并提出了未来研究的方向。本文仍会持续和跟踪最新的基于 Transformer 的分割与检测方法。



项目地址:https://github.com/lxtGH/Awesome-Segmentation-With-Transformer

论文地址:https://arxiv.org/pdf/2304.09854.pdf


研究动机


ViT 和 DETR 的出现使得分割与检测领域有了十足的进展,目前几乎各个数据集基准上,排名靠前的方法都是基于 Transformer 的。为此有必要系统地总结与对比下这个方向的方法与技术特点。

近期的大模型架构均基于 Transformer 结构,包括多模态模型以及分割的基础模型(SAM),视觉各个任务向着统一的模型建模靠拢。

分割与检测衍生出来了很多相关下游任务,这些任务很多方法也是采用 Transformer 结构来解决。


综述特色


系统性和可读性。本文系统地回顾了分割的各个任务定义,以及相关任务定义,评估指标。并且本文从卷积的方法出发,基于 ViT 和 DETR,总结出了一种元架构。基于该元架构,本综述把相关的方法进行归纳与总结,系统地回顾了近期的方法。具体的技术回顾路线如图 1 所示。

技术的角度进行细致分类。相比于前人的 Transformer 综述,本文对方法的分类会更加的细致。本文把类似思路的论文汇聚到一起,对比了他们的相同点以及不同点。例如,本文会对同时修改元架构的解码器端的方法进行分类,分为基于图像的 Cross Attention,以及基于视频的时空 Cross Attention 的建模。

研究问题的全面性。本文会系统地回顾分割各个方向,包括图像,视频,点云分割任务。同时,本文也会同时回顾相关的方向比如开集分割于检测模型,无监督分割和弱监督分割。


图 1. Survey 的内容路线图


图 2. 常用的数据集以及分割任务总结


Transformer-Based 分割和检测方法总结与对比


图 3. 通用的元架构框架(Meta-Architecture)


本文首先基于 DETR 和 MaskFormer 的框架总结出了一个元架构。这个模型包括了如下几个不同的模块:


Backbone:特征提取器,用来提取图像特征。

Neck:构建多尺度特征,用来处理多尺度的物体。

Object Query:查询对象,用于代表场景中的每个实体,包括前景物体以及背景物体。

Decoder:解码器,用于去逐步优化 Object Query 以及对应的特征。

End-to-End Training:基于 Object Query 的设计可以做到端到端的优化。


基于这个元架构,现有的方法可以分为如下五个不同的方向来进行优化以及根据任务进行调整,如图 4 所示,每个方向有包含几个不同的子方向。


图 4. Transformer-Based Segmentation 方法总结与对比


更好的特征表达学习,Representation Learning。强大的视觉特征表示始终会带来更好的分割结果。本文将相关工作分为三个方面:更好的视觉 Transformer 设计、混合 CNN/Transformer/MLP 以及自监督学习。

解码器端的方法设计,Interaction Design in Decoder。本章节回顾了新的 Transformer 解码器设计。本文将解码器设计分为两组:一组用于改进图像分割中的交叉注意力设计,另一组用于视频分割中的时空交叉注意力设计。前者侧重于设计一个更好的解码器,以改进原始 DETR 中的解码器。后者将基于查询对象的目标检测器和分割器扩展到视频领域,用于视频目标检测(VOD)、视频实例分割(VIS)和视频像素分割(VPS),重点在建模时间一致性和关联性。

尝试从查询对象优化的角度,Optimizing Object Query。与 Faster-RCNN 相比,DETR 要更长的收敛时间表。由于查询对象的关键作用,现有的一些方法已经展开了研究,以加快训练速度和提高性能。根据对象查询的方法,本文将下面的文献分为两个方面:添加位置信息和采用额外监督。位置信息提供了对查询特征进行快速训练采样的线索。额外监督着重设计了除 DETR 默认损失函数之外的特定损失函数。

使用查询对象来做特征和实例的关联,Using Query For Association。受益于查询对象的简单性,最近的多个研究将其作为关联工具来解决下游任务。主要有两种用法:一种是实例级别的关联,另一种是任务级别的关联。前者采用实例判别的思想,用于解决视频中的实例级匹配问题,例如视频的分割和跟踪。后者使用查询对象来桥接不同子任务实现高效的多任务学习。

多模态的条件查询对象生成,Conditional Query Generation。这一章节主要关注多模态分割任务。条件查询查询对象主要来处理跨模态和跨图像的特征匹配任务。根据任务输入条件而确定的,解码器头部使用不同的查询来获取相应的分割掩码。根据不同输入的来源,本文将这些工作分为两个方面:语言特征和图像特征。这些方法基于不同模型特征融合查询对象的策略,在多个多模态的分割任务以及 few-shot 分割上取得了不错的结果。


图 5 中给出这 5 个不同方向的一些代表性的工作对比。更具体的方法细节以及对比可以参考论文的内容。


图 5. Transformer-based 的分割与检测代表性的方法总结与对比


相关研究领域的方法总结与对比


本文还探索了几个相关的领域:1,基于 Transformer 的点云分割方法。2, 视觉与多模态大模型调优。3,域相关的分割模型研究,包括域迁移学习,域泛化学习。4,高效语义分割:无监督与弱监督分割模型。5,类无关的分割与跟踪。6,医学图像分割。


图 6. 相关研究领域的基于 Transformer 方法总结与对比


不同方法的实验结果对比


图 7. 语义分割数据集的基准实验


图 8. 全景分割数据集的基准实验


本文还统一地使用相同的实验设计条件来对比了几个代表性的工作在全景分割以及语义分割上多个数据集的结果。结果发现,在使用相同的训练策略以及编码器的时候,方法性能之间的差距会缩小。


此外,本文还同时对比了近期的 Transformer-based 的分割方法在多个不同数据集和任务上结果。(语义分割,实例分割,全景分割,以及对应的视频分割任务)


未来方向


此外本文也给出了一些未来的可能一些研究方向分析。这里给出三个不同的方向作为例子。


更加通用与统一的分割模型。使用 Transformer 结构来统一不同的分割任务是一个趋势。最近的研究使用基于查询对象的 Transformer 在一个体系结构下执行不同的分割任务。一个可能的研究方向是通过一个模型在各种分割数据集上统一图像和视频分割任务。这些通用模型可以在各种场景中实现通用和稳健的分割,例如,在各种场景中检测和分割罕见类别有助于机器人做出更好的决策。

结合视觉推理的分割模型。视觉推理要求机器人理解场景中物体之间的联系,这种理解在运动规划中起着关键作用。先前的研究已经探索了将分割结果作为视觉推理模型的输入,用于各种应用,如目标跟踪和场景理解。联合分割和视觉推理可以是一个有前景的方向,对分割和关系分类都具有互惠的潜力。通过将视觉推理纳入分割过程中,研究人员可以利用推理的能力提高分割的准确性,同时分割结果也可以为视觉推理提供更好的输入。

持续学习的分割模型研究。现有的分割方法通常在封闭世界的数据集上进行基准测试,这些数据集具有一组预定义的类别,即假设训练和测试样本具有预先知道的相同类别和特征空间。然而,真实场景通常是开放世界和非稳定的,新类别的数据可能不断出现。例如,在自动驾驶车辆和医学诊断中,可能会突然出现未预料到的情况。现有方法在现实和封闭世界场景中的性能和能力之间存在明显差距。因此,希望能够逐渐而持续地将新概念纳入分割模型的现有知识库中,使得模型能够进行终身学习。


更多的研究方向内容可以查阅原始论文。


相关文章
|
2天前
|
人工智能 UED
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
VersaGen 是一款生成式 AI 代理,专注于文本到图像合成中的视觉控制能力,支持多种视觉控制类型,并通过优化策略提升图像生成质量和用户体验。
20 8
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
|
4天前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
24 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
4月前
|
机器学习/深度学习 人工智能 数据可视化
首个全自动科学发现AI系统,Transformer作者创业公司Sakana AI推出AI Scientist
【9月更文挑战第11天】Sakana AI公司近日推出全球首个全自动科学发现AI系统——AI Scientist,实现了人工智能在科学研究领域的重大突破。AI Scientist不仅能独立完成从假设提出到实验设计、数据分析及论文撰写的全过程,还能通过模拟评审提升研究成果的质量。该系统已成功应用于机器学习的多个子领域,并产出达到顶级会议标准的论文。尽管其高效性备受赞誉,但也引发了关于研究可信度和潜在风险的讨论。Sakana AI强调,系统具备可追溯的决策过程与严格的评审机制,确保了研究的可靠性和透明度。论文详情参见:[链接]。
96 6
|
14天前
|
存储 人工智能 安全
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
|
22天前
|
数据采集 人工智能 编解码
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
书生·万象InternVL 2.5是由上海AI实验室OpenGVLab团队推出的开源多模态大语言模型系列。该模型在多模态理解基准(MMMU)上表现优异,超越了许多商业模型,适用于图像和视频分析、视觉问答、文档理解和多语言处理等多个领域。
74 7
书生·万象InternVL 2.5:上海 AI Lab 开源的多模态大语言模型,超越了目前许多商业模型
|
30天前
|
机器学习/深度学习 存储 人工智能
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。
49 9
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
|
30天前
|
人工智能 vr&ar
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
GeneMAN是由上海AI实验室、北京大学、南洋理工大学和上海交通大学联合推出的3D人体模型创建框架。该框架能够从单张图片中生成高保真度的3D人体模型,适用于多种应用场景,如虚拟试衣、游戏和娱乐、增强现实和虚拟现实等。
57 7
GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
|
8天前
|
人工智能 API 数据库
Browser Use:开源 AI 浏览器助手,自动完成网页交互任务,支持多标签页管理、视觉识别和内容提取等功能
Browser Use 是一款专为大语言模型设计的智能浏览器工具,支持多标签页管理、视觉识别、内容提取等功能,并能记录和重复执行特定动作,适用于多种应用场景。
135 0
Browser Use:开源 AI 浏览器助手,自动完成网页交互任务,支持多标签页管理、视觉识别和内容提取等功能
|
2月前
|
人工智能 编解码 BI
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
LEOPARD是由腾讯AI Lab西雅图实验室推出的视觉语言模型,专为处理含有大量文本的多图像任务设计。该模型通过自适应高分辨率多图像编码模块和大规模多模态指令调优数据集,在多个基准测试中表现卓越,适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个应用场景。
41 2
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
|
2月前
|
人工智能 自然语言处理 知识图谱
英伟达nGPT重塑Transformer,AI训练速度暴增20倍!文本越长,加速越快
英伟达提出nGPT(Normalized Transformer),通过单位范数归一化和超球面上的表示学习,显著提升了Transformer模型的训练速度和性能。实验显示,nGPT在处理4k长度序列时,训练速度比传统Transformer快10倍,且在多个下游任务中表现出色。论文地址:https://arxiv.org/pdf/2410.01131
42 12