数值分析算法 MATLAB 实践 线性方程组 分解法

简介: 数值分析算法 MATLAB 实践 线性方程组 分解法

数值分析算法 MATLAB 实践 线性方程组 分解法

Lu分解法

% LUmethod分解矩阵
function [L,U]=LUmethod(A)
[rows,~]=size(A);
temp_mat=A;
L=zeros(rows);
for i=1:rows
    coefficient=temp_mat(:,i);
    coefficient=coefficient./coefficient(i);
    coefficient(1:i)=0;
    L(:,i)=coefficient;
    temp_mat=-coefficient*temp_mat(i,:)+temp_mat;
end
U=temp_mat;
L(eye(rows)==1)=1;
end
% LUmethod分解矩阵 求解线性方程组
function x=LUsolve(L,U,b)
[rows,~]=size(L);
aug_mat=[L,b];
for i=1:rows
    aug_mat(i,:)=aug_mat(i,:)./aug_mat(i,i);
    coefficient=-aug_mat(:,i);
    coefficient(1:i)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
aug_mat=[U,aug_mat(:,rows+1:end)];
for i=rows:-1:1
    aug_mat(i,:)=aug_mat(i,:)./aug_mat(i,i);
    coefficient=-aug_mat(:,i);
    coefficient(i:end)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
x=aug_mat(:,rows+1:end);
x=x';
end
function solution=LuFunmethon(M, Presion) 
 % LU分解 M为用户输入的增广矩阵
 % Precision为用户所输入的精度要求
    if nargin==2
      try
         digits(Precision);
      cath
         disp('你输入的精度有误');digits(10);
      end
    else
      digits(10);
    end     

    A=vpa(M)
    row=size(A,1);
    col=size(A,2);
    if ndims(A)~=2|(col-row)~=1
        disp('矩阵的大小有误');
        return
    end
    if det(M(:,1:row))==0
        disp('该方程的系数矩阵行列式为零');
        return
    end
%% 调用系统的LU命令
       [L,U,P]=lu(double(A));
      %% 回代求解过程
    for i=row:-1:1
        temp=U(i,col);
        for k=i+1:row
            temp=vpa(temp-t_solution(k)*U(i,k));
        end
            t_solution(i)=vpa(temp/U(i,i));
    end
    for i=1:row
        temp=t_solution(i);
        for k=1: i-1
            temp=vpa(temp-t_solution(k)*U(i,k));
        end
             solution(i)=temp;
    end
end

Cholesky分解

%% 0.平方根法解线性方程组,输出L矩阵和根
%% 1.对称正定矩阵的Cholesky分解
%对称正定矩阵A存在唯一的对角元素均为正数的下三角矩阵L,使得A=L*L'
%这种分解叫做Cholesky分解
A=[3,3,5;3,5,9;5,9,17];
b=[0;-2;-4];
%L=chol(A,'lower')基于矩阵A的对角线和下三角形生成下三角矩阵L,满足方程L*L'=A
L=chol(A,'lower')
%% 2.由Ly=b得到y
y=L\b;
%% 3.由L_转置*x=y得到方程组的解x
x=L'\y%输出线性方程组的根

function x = Cholesky_method(A,b)
%Cholesky平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    n = length(A);
    L = zeros(n);
    for k = 1:n
        delta = A(k,k);
        for j = 1:k-1
            delta = delta-L(k,j)^2;
        end

        L(k,k) = sqrt(delta);
        for i = k+1:n
            L(i,k) = A(i,k);
            for j = 1:n-1
                L(i,k) = L(i,k)-L(i,j)*L(k,j);
            end
            L(i,k) = L(i,k)/L(k,k);
        end

    end
    L 
    x =zeros(n,1);
    y =zeros(n,1);
    y(1) = b(1)/L(1,1);
    for i = 2:n
        ly = 0;
        for j = 1:i-1
            ly = ly+L(i,j)*y(i);
        end
        y(i) = (b(i)-ly)/L(i,i);
    end
    x(n) = y(n)/L(n,n);
    for i = n-1:-1:1
        lx = 0;
        for j = i+1:n
            lx = lx+L(j,i)*x(j);
        end
        x(i) = (y(i)-lx)/L(i,i);
    end
end

%Cholesky平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
A6= [1 2 -1;2 5 1; -1 1 14];
b6 = [3;4;3];
x6 = Cholesky_method(A6,b6);
disp(['方程组的解:x6= ']);
disp(x6)

Cholesky分解--改进平方根法

function x=chol_ldlt_method(A,b)
%function x=chol_ldlt_method(A,b)
%Cholesky改进平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    n = length(A);
    L = eye(n);
    D = zeros(n);
    d = zeros(1,n);
    T = zeros(n);
    for k =1:n
        d(k) = A(k,k);
        for j = 1:k-1
            d(k)=d(k)-L(k,j)*T(k,j);
        end
        for i=k+1:n
            T(i,k) = A(i,k);
            for j = 1:k-1
                T(i,k) =T(i,k) -T(i,j)*L(k,j);
            end
            L(i,k) = T(i,k)/d(k);
        end
    end
    D = diag(d);
    L
    D
    x =zeros(n,1);
    y =zeros(n,1);
    d1 = zeros(n,1);
    d1 = diag(D);
    y(1) = b(1);
    for i =2:n
        ly = 0;
        for k=1:i-1
            ly = ly+L(i,k)*y(k);
        end
        y(i) = b(i)-ly;
    end
    x(n) = y(n)/d1(n);
    for i = n-1:-1:1
        lx = 0;
        for k=i+1:n
            lx = lx+L(k,i)*x(k);
        end
        x(i) = y(i)/d1(i)-lx;
end
%function x=chol_ldlt_method(A,b)
%Cholesky改进平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
A7= [1 2 -1;2 5 1; -1 1 14];
b7 = [3;4;3];
x7=chol_ldlt_method(A7,b7);
disp(['方程组的解:x7= ']);
disp(x7)

奇异值分解法

%奇异值分解计算线性方程组
a=[6.5 -1 -1 3.6
6.2 7 -5 4
3 2.1 -6 4.8
1 5.6 3.7 2.1];
b=[12.3 21.4 -7.8 21]';
[u,s,v]=svd(a)
x=v*inv(s)*u'*b
目录
相关文章
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
22小时前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
6天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
6天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章

下一篇
开通oss服务