数值分析算法 MATLAB 实践 线性方程组 分解法

简介: 数值分析算法 MATLAB 实践 线性方程组 分解法

数值分析算法 MATLAB 实践 线性方程组 分解法

Lu分解法

% LUmethod分解矩阵
function [L,U]=LUmethod(A)
[rows,~]=size(A);
temp_mat=A;
L=zeros(rows);
for i=1:rows
    coefficient=temp_mat(:,i);
    coefficient=coefficient./coefficient(i);
    coefficient(1:i)=0;
    L(:,i)=coefficient;
    temp_mat=-coefficient*temp_mat(i,:)+temp_mat;
end
U=temp_mat;
L(eye(rows)==1)=1;
end
% LUmethod分解矩阵 求解线性方程组
function x=LUsolve(L,U,b)
[rows,~]=size(L);
aug_mat=[L,b];
for i=1:rows
    aug_mat(i,:)=aug_mat(i,:)./aug_mat(i,i);
    coefficient=-aug_mat(:,i);
    coefficient(1:i)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
aug_mat=[U,aug_mat(:,rows+1:end)];
for i=rows:-1:1
    aug_mat(i,:)=aug_mat(i,:)./aug_mat(i,i);
    coefficient=-aug_mat(:,i);
    coefficient(i:end)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
x=aug_mat(:,rows+1:end);
x=x';
end
function solution=LuFunmethon(M, Presion) 
 % LU分解 M为用户输入的增广矩阵
 % Precision为用户所输入的精度要求
    if nargin==2
      try
         digits(Precision);
      cath
         disp('你输入的精度有误');digits(10);
      end
    else
      digits(10);
    end     

    A=vpa(M)
    row=size(A,1);
    col=size(A,2);
    if ndims(A)~=2|(col-row)~=1
        disp('矩阵的大小有误');
        return
    end
    if det(M(:,1:row))==0
        disp('该方程的系数矩阵行列式为零');
        return
    end
%% 调用系统的LU命令
       [L,U,P]=lu(double(A));
      %% 回代求解过程
    for i=row:-1:1
        temp=U(i,col);
        for k=i+1:row
            temp=vpa(temp-t_solution(k)*U(i,k));
        end
            t_solution(i)=vpa(temp/U(i,i));
    end
    for i=1:row
        temp=t_solution(i);
        for k=1: i-1
            temp=vpa(temp-t_solution(k)*U(i,k));
        end
             solution(i)=temp;
    end
end

Cholesky分解

%% 0.平方根法解线性方程组,输出L矩阵和根
%% 1.对称正定矩阵的Cholesky分解
%对称正定矩阵A存在唯一的对角元素均为正数的下三角矩阵L,使得A=L*L'
%这种分解叫做Cholesky分解
A=[3,3,5;3,5,9;5,9,17];
b=[0;-2;-4];
%L=chol(A,'lower')基于矩阵A的对角线和下三角形生成下三角矩阵L,满足方程L*L'=A
L=chol(A,'lower')
%% 2.由Ly=b得到y
y=L\b;
%% 3.由L_转置*x=y得到方程组的解x
x=L'\y%输出线性方程组的根

function x = Cholesky_method(A,b)
%Cholesky平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    n = length(A);
    L = zeros(n);
    for k = 1:n
        delta = A(k,k);
        for j = 1:k-1
            delta = delta-L(k,j)^2;
        end

        L(k,k) = sqrt(delta);
        for i = k+1:n
            L(i,k) = A(i,k);
            for j = 1:n-1
                L(i,k) = L(i,k)-L(i,j)*L(k,j);
            end
            L(i,k) = L(i,k)/L(k,k);
        end

    end
    L 
    x =zeros(n,1);
    y =zeros(n,1);
    y(1) = b(1)/L(1,1);
    for i = 2:n
        ly = 0;
        for j = 1:i-1
            ly = ly+L(i,j)*y(i);
        end
        y(i) = (b(i)-ly)/L(i,i);
    end
    x(n) = y(n)/L(n,n);
    for i = n-1:-1:1
        lx = 0;
        for j = i+1:n
            lx = lx+L(j,i)*x(j);
        end
        x(i) = (y(i)-lx)/L(i,i);
    end
end

%Cholesky平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
A6= [1 2 -1;2 5 1; -1 1 14];
b6 = [3;4;3];
x6 = Cholesky_method(A6,b6);
disp(['方程组的解:x6= ']);
disp(x6)

Cholesky分解--改进平方根法

function x=chol_ldlt_method(A,b)
%function x=chol_ldlt_method(A,b)
%Cholesky改进平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    n = length(A);
    L = eye(n);
    D = zeros(n);
    d = zeros(1,n);
    T = zeros(n);
    for k =1:n
        d(k) = A(k,k);
        for j = 1:k-1
            d(k)=d(k)-L(k,j)*T(k,j);
        end
        for i=k+1:n
            T(i,k) = A(i,k);
            for j = 1:k-1
                T(i,k) =T(i,k) -T(i,j)*L(k,j);
            end
            L(i,k) = T(i,k)/d(k);
        end
    end
    D = diag(d);
    L
    D
    x =zeros(n,1);
    y =zeros(n,1);
    d1 = zeros(n,1);
    d1 = diag(D);
    y(1) = b(1);
    for i =2:n
        ly = 0;
        for k=1:i-1
            ly = ly+L(i,k)*y(k);
        end
        y(i) = b(i)-ly;
    end
    x(n) = y(n)/d1(n);
    for i = n-1:-1:1
        lx = 0;
        for k=i+1:n
            lx = lx+L(k,i)*x(k);
        end
        x(i) = y(i)/d1(i)-lx;
end
%function x=chol_ldlt_method(A,b)
%Cholesky改进平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
A7= [1 2 -1;2 5 1; -1 1 14];
b7 = [3;4;3];
x7=chol_ldlt_method(A7,b7);
disp(['方程组的解:x7= ']);
disp(x7)

奇异值分解法

%奇异值分解计算线性方程组
a=[6.5 -1 -1 3.6
6.2 7 -5 4
3 2.1 -6 4.8
1 5.6 3.7 2.1];
b=[12.3 21.4 -7.8 21]';
[u,s,v]=svd(a)
x=v*inv(s)*u'*b
目录
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章