数值分析算法 MATLAB 实践 线性方程组 SOR迭代法

简介: 数值分析算法 MATLAB 实践 线性方程组 SOR迭代法

数值分析算法 MATLAB 实践 线性方程组 SOR迭代法

% 逐次超松驰迭代法(successive over relaxation method)迭代法
% function [x,t,it,w] = SORFunc(A,b,I,eps,w)
% A: 系数矩阵 b: 载荷矩阵 I: 最大迭代次数
% w: 松弛因子(w=1 时即为 Gauss-Seidel 迭代法)
% x: 解矩阵% t: 时间
% it: 迭代次数% w: 松弛因子% 迭代初值默认为 0
A1 = [8 -3 2; 4 11 -1; 6 3 12]; b1 = [20; 33; 36];
w=1.2;%松弛因子
it_max = 1000;eps=1e-6;
[x6,t6,k6_cnt,w] = SORFunc(A1,b1,it_max,eps,w);
disp('迭代次数:k6_cnt=');
disp(k6_cnt)
disp(['方程组的解:x6 = ']);
disp(x6)

%% function [x,n,flag]=SOR(A,b,eps,W,it_max)
%sor函数为用松弛迭代法求解线性方程组
%A为线性方程组的系数矩阵%b为线性方程组的常数向量
%eps为精度要求 %W为超弛因子 %max1为最大迭代次数
%x为线性方程组的解%n为迭代次数
%flag为指标变量,flag='OK!'表示迭代收敛达到指标要求%flag='fail!'表示迭代失败
A2 = [8 -3 2; 4 11 -1; 6 3 12]; b2 = [20; 33; 36];
W=1.2;%松弛因子
it_max = 1000;eps=1e-6;%最大迭代次数
[x7,k7_cnt,flag]=SOR(A2,b2,eps,W,it_max);
disp('迭代次数:k7_cnt=');
disp(k7_cnt)
disp(['方程组的解:x7 = ']);
disp(x7)

%% function [x, k] = SORFunmethod(A, b, x0, MaxIters, err, w)
%  输入:A:系数矩阵   b:常数矩阵;  x0:初始解;
%  MaxIters:最大迭代次数;
%  err:精度阈值;  w:松弛因子; 输出: x:近似解;  k:迭代次数;
x0 = [0;0;0];
%调用SOR超松弛迭代法求解
A3 = [8 -3 2; 4 11 -1; 6 3 12]; b3 = [20; 33; 36];
it_max = 1000; eps=1e-6;
%w松弛因子 w>1 超松弛迭代法 w=1 高斯-赛德尔迭代 w<1 低松弛迭代法
w0 = 0.6;  % w<1 低松弛迭代法
w1 = 1.1; % w>1 超松弛迭代法
w2 = 1.9; % w>1 超松弛迭代法
[x8_0, k8_cnt0] = SORFunmethod(A3, b3, x0, it_max, eps, w0);
[x8_1, k8_cnt1] = SORFunmethod(A3, b3, x0, it_max, eps, w1);
[x8_2, k8_cnt2] = SORFunmethod(A3, b3, x0, it_max, eps, w2);
disp('迭代次数:k8_cnt0=');
disp(k8_cnt0)
disp(['方程组的解:x8_0 = ']);
disp(x8_0)
disp('迭代次数:k8_cnt1=');
disp(k8_cnt1)
disp(['方程组的解:x8_1 = ']);
disp(x8_1)
disp('迭代次数:k8_cnt2=');
disp(k8_cnt2)
disp(['方程组的解:x8_2 = ']);
disp(x8_2)
function [x,n,flag]=SOR(A,b,eps,W,it_max)
%sor函数为用松弛迭代法求解线性方程组
%A为线性方程组的系数矩阵%b为线性方程组的常数向量
%eps为精度要求 %W为超弛因子 %max1为最大迭代次数
%x为线性方程组的解%n为迭代次数
%flag为指标变量,flag='OK!'表示迭代收敛达到指标要求%flag='fail!'表示迭代失败
    if nargin<5
        it_max=10000;
    end
    if nargin<4
        W=1;
    end
    if nargin<3
        eps=1e-11;
    end
    k=length(A);
    n=0;
    x=zeros(k,1);
    y=zeros(k,1);
    flag='OK!';
    while (1)
        y=x;
        for i=1:k
            z=b(i);
            for j=1:k
                if j~=i
                    z=z-A(i,j)*x(j);
                end
            end
            if abs(A(i,i))<1e-10 | n==it_max
                flag='fail!';
                return;
            end
            z=z/A(i,i);
            x(i)=(1-W)*x(i)+W*z;
        end
        if norm(y-x,inf)<eps
            break;
        end
        n=n+1;
    end
end
function [x,t,it,w] = SORFunc(A,b,I,eps,w)
% 逐次超松驰迭代法(successive over relaxation method)迭代法
% A: 系数矩阵 b: 载荷矩阵 I: 最大迭代次数
% w: 松弛因子(w=1 时即为 Gauss-Seidel 迭代法)
% x: 解矩阵% t: 时间
% it: 迭代次数% w: 松弛因子% 迭代初值默认为 0
tic%开始时间
    [n,~] = size(A);
    x = zeros(n,1);
    D = diag(diag(A)); %求 A 的对角矩阵
    L = -tril(A,-1); %求 A 的下三角矩阵,不带对角线
    U = -triu(A,1); %求 A 的上三角矩阵
    w_opt = 2/(1+sqrt(1-(vrho(D\(L+U)))^2)); % 最佳松弛因子
    if nargin < 4
        eps = 1e-6;
        w = w_opt;
    end
    if nargin < 5
        w = w_opt;
    end
    Lw = (D-w*L)\((1-w)*D+w*U);
    f = w*((D-w*L)\b);
    x_exact = A\b;
    it = 1;
    for k = 1:I-1
        x = Lw*x+f;
        if norm(x-x_exact)>eps
        it = it+1;
        end
    end
    t = toc;%结束时间
end
function [x, k] = SORFunmethod(A, b, x0, MaxIters, err, w)
%  函数功能:对超松弛迭代法求解线性方程组;
% function [x, k] = SORFunmethod(A, b, x0, MaxIters, err, w)
%  输入:A:系数矩阵   b:常数矩阵;  x0:初始解;
%  MaxIters:最大迭代次数;
%  err:精度阈值;  w:松弛因子; 输出: x:近似解;  k:迭代次数;
  n = length(x0); 
  x1 = x0;  
  x2 = zeros(n, 1); 
  x3 = zeros(n, 1);
  r = max(abs(b - A*x1));
  k = 0;
  while r > err
    for i = 1:n
        sum = 0;
        for j = 1:n
            if j > i
                sum = sum + A(i, j) * x1(j);
            elseif j < i
                sum = sum + A(i, j) * x2(j);
            end
        end
        x2(i) = (1 - w)*x1(i) + w*(b(i) - sum) / (A(i, i) + eps);
    end
    for i = n:-1:1
        sum = 0;
        for j = 1:n
            if j > i
                sum = sum + A(i, j) * x3(j);
            elseif j < i
                sum = sum + A(i, j) * x2(j);
            end
        end
        x3(i) = (1 - w) * x2(i) + w * (b(i) - sum) / A(i, i);
    end
    r = max(abs(x3 - x1));
    x1 = x3;
    k = k + 1;
    if k > MaxIters
        x = [];
        return;
    end
  end
  x = x1;       %最终输出结果
end
目录
相关文章
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
22小时前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
15天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
151 80
|
9天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
12天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
8天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
13天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

热门文章

最新文章

下一篇
开通oss服务