数值分析算法 MATLAB 实践 线性方程组迭代法

简介: 数值分析算法 MATLAB 实践 线性方程组迭代法

数值分析算法 MATLAB 实践 线性方程组迭代法

Gauss-Seidel迭代法

%% 求线性方程组的Gauss-Seidel迭代法,调用格式为
%  [x, k] = guaseidel(A,b,x0,eps,it_max)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,eps 为精度要求,默认为1e-5,
%  it_max 为最大迭代次数,默认为100
%  x 为线性方程组的解,k迭代次数
x0=[0,0,0]';%[x1;x2;x3]列向量
it_max = 1000;eps=1e-6;
[x3,k3_cnt] = GuaSeidelFunc(A,b,x0,eps,it_max);
disp('迭代次数:k3_cnt=');
disp(k3_cnt)
disp(['方程组的解:x3 = ']);
disp(x3)


%% 求线性方程组的Gauss-Seidel迭代法,调用格式为
%  [x,k]=GuaSeideFunmethod(A,b,x0,ep,N)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,ep为精度要求,默认为1e-6,
%  N 为最大迭代次数,默认为500
%  x 为线性方程组的解,k迭代次数
x0=[0,0,0]';%[x1;x2;x3]列向量
it_max = 1000;eps=1e-6;
[x4,k4_cnt]=GuaSeideFunmethod(A,b,x0,eps,it_max);
disp('迭代次数:k4_cnt=');
disp(k4_cnt)
disp(['方程组的解:x4 = ']);
disp(x4)

%% 求线性方程组的GuessSeidel迭代法,调用格式为
%  function [x,k] = GuessSeidel(A,b,eps,it_max)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,eps为精度要求,默认为1e-6,
%  it_max 为最大迭代次数,默认为500
%  x 为线性方程组的解,k迭代次数
it_max = 1000;eps=1e-6;
[x5,k5_cnt] = GuessSeidel(A,b,eps,it_max);
disp('迭代次数:k5_cnt=');
disp(k5_cnt)
disp(['方程组的解:x5 = ']);
disp(x5)
function [x,k] = GuessSeidel(A,b,eps,it_max)
%%GuessSeidel:高斯-赛德尔方法求解线性方程组
%高斯-赛德尔方法是一种迭代法,首先猜测各个xi的初始值(一个简单的方法是设各个xi为0)
%将这些初始值带入到第一个方程解出x1,然后更新x1,将xi带入第二个方程x2,更新x2
%依次迭代,直至数值解非常接近真实值为止
%判断条件:对任意的i,有ea(i)=abs((x(i)-xold(i))/x(i))<=es
%即:max(ea)<=es
%%输入
%A=系数矩阵
%b=右侧矩阵
%es=终止准则(default = 0.00001%)
%maxit=最大迭代次数(default = 500)
%输出:
%x=解向量
%%代码实现
%思路:解向量可以简单的表示为x=d-C*x
%其中di=b_i/a_ii,C的对角线元素为0。
    if nargin<2
        error('至少输入系数矩阵和右侧矩阵')
    end
    if nargin<4||isempty(it_max)
        it_max=500;
    end
    if nargin<3||isempty(eps)
        eps=1e-6;
    end
    [m,n]=size(A);
    if m~=n
         error('系数矩阵必须为方阵')
    end
%求解C
    k = 0;
    C = A;
    for i = 1:n
        C(i,i)=0;
        x(i) = 0;%顺便求初始x
    end
    x=x';
    for i = 1:n
        C(i,1:n) = C(i,1:n)/A(i,i);
    end
    %求解d
    for i=1:n
        d(i)=b(i)/A(i,i);
    end
    %开始迭代
        iter=0;
    while(1)
        xprev=x;%记录上次的x
        for i=1:n
            x(i)=d(i) - C(i,:)*x;%求解并更新xi
            if x(i)~=0
                ea(i)=abs((x(i)-xprev(i))/x(i));
            end
        end
        iter = iter+1;
        if max(ea)<=eps || iter>=it_max
            break
        end
        k=k+1;
    end
end
function [x,k] = GuessSeidel(A,b,eps,it_max)
%%GuessSeidel:高斯-赛德尔方法求解线性方程组
%高斯-赛德尔方法是一种迭代法,首先猜测各个xi的初始值(一个简单的方法是设各个xi为0)
%将这些初始值带入到第一个方程解出x1,然后更新x1,将xi带入第二个方程x2,更新x2
%依次迭代,直至数值解非常接近真实值为止
%判断条件:对任意的i,有ea(i)=abs((x(i)-xold(i))/x(i))<=es
%即:max(ea)<=es
%%输入
%A=系数矩阵
%b=右侧矩阵
%es=终止准则(default = 0.00001%)
%maxit=最大迭代次数(default = 500)
%输出:
%x=解向量
%%代码实现
%思路:解向量可以简单的表示为x=d-C*x
%其中di=b_i/a_ii,C的对角线元素为0。
    if nargin<2
        error('至少输入系数矩阵和右侧矩阵')
    end
    if nargin<4||isempty(it_max)
        it_max=500;
    end
    if nargin<3||isempty(eps)
        eps=1e-6;
    end
    [m,n]=size(A);
    if m~=n
         error('系数矩阵必须为方阵')
    end
%求解C
    k = 0;
    C = A;
    for i = 1:n
        C(i,i)=0;
        x(i) = 0;%顺便求初始x
    end
    x=x';
    for i = 1:n
        C(i,1:n) = C(i,1:n)/A(i,i);
    end
    %求解d
    for i=1:n
        d(i)=b(i)/A(i,i);
    end
    %开始迭代
        iter=0;
    while(1)
        xprev=x;%记录上次的x
        for i=1:n
            x(i)=d(i) - C(i,:)*x;%求解并更新xi
            if x(i)~=0
                ea(i)=abs((x(i)-xprev(i))/x(i));
            end
        end
        iter = iter+1;
        if max(ea)<=eps || iter>=it_max
            break
        end
        k=k+1;
    end
end
function [x,k]=GuaSeideFunmethod(A,b,x0,ep,N)
% 求线性方程组的Gauss-Seidel迭代法,调用格式为
%  [x,k]=GuaSeideFunmethod(A,b,x0,ep,N)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,ep为精度要求,默认为1e-6,
%  N 为最大迭代次数,默认为500
%  x 为线性方程组的解,k迭代次数
    n=length(b); 
    if nargin<5 
        N=500; 
    end  
    if nargin<4 
       ep=1e-6;  
    end
    if nargin<3
        x0=zeros(n,1);
        k=0; 
    end
    x=zeros(n,1);
    k=0;
    while k<N
        for i=1:n
            if i==1 
          x(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);        %开始迭代变量
            elseif i==n  
           x(n)=(b(n)-A(n,1:n-1)*x(1:n-1))/A(n,n);  %最后迭代变量
            else                                         %其它迭代变量                    
 x(i)=(b(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(i,i);
            end
        end
        if  norm(x-x0,inf)<ep
            break;
        end
         x0=x;   
        %disp('x=');
        %disp(x); % 此两行代码可输出中间结果
    k=k+1;
    end
    if k==N
        warning('已到达迭代次数上限!');
    end
 end
目录
相关文章
|
8天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
8天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
104 68
|
17天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
18天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
18天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
16天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
15天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
127 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章