数值分析算法 MATLAB 实践 常微分方程求解

简介: 数值分析算法 MATLAB 实践 常微分方程求解

数值分析算法 MATLAB 实践 常微分方程求解

Euler 法及改进算法

function [x,y] = euler(fun,a,b,h,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% f是带求函数的一阶导形式
% a,b分别是自变量取值上下限
% y0 是初始条件y(0)
% h是步长
    s = (b - a) / h; % 求步数
    X = zeros(1, s+1);
    Y = zeros(1, s+1);
    X = a:h:b;
    Y(1) = y0;
    for k = 1:s
        Y(k+1) = Y(k) + h * fun(X(k), Y(k))
    end
    x = X';
    y = Y';
end
%% euler求解微分方程
% dfun1 = y^2-y^3;
 [x, y] = euler(@dfun1, 0,5,0.01,0.1);
% dfun1 = y;
% [x, y] = euler(@dfun1, 0,1,0.1,1);
figure
plot(x, y);
title('显示欧拉格式');

%% 微分方程
function dfun1 = dfun1(t,y)
    dfun1 = y^2-y^3;
    %dfun1 = y;
end
function[x,y]=imp_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    % 显式 Euler 作为初始值迭代计算
    yi_0 =  y(i-1) + h_step * func(x(i-1), y(i-1));
    yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    while abs(yi_1 - yi_0) > 1e-6
        yi_0 = yi_1;
        yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    end
    y(i) = yi_1;
end
function[x,y]=improve_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    yp = y(i-1) + h_step * func(x(i-1), y(i-1));
    yq = y(i-1) + h_step * func(x(i), yp);
    y(i) = 0.5 * (yp + yq);
end

Runge-Kutta 算法

4阶-单变量龙格库塔公式

rk45
rk45

4阶-多变量龙格库塔公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

% 单变量龙格库塔Runge_kutta 经典法
%一阶常微分方程的一般表达式的右端函数:func
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
function[x,y]=Runge_kutta(func,a_start,b_end,h_step,y0)
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    k1 = func(x(i-1), y(i-1));
    k2 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k1);
    k3 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k2);
    k4 = func(x(i-1) + h_step, y(i-1) + h_step*k3);
    y(i) = y(i-1) + h_step/6*(k1 + 2*k2 + 2*k3 + k4);
end
function[x,y]=Runge_kutta45(dyfunc,xspan,y0,h_step)
% 多变量龙格库塔Runge_kutta45
% h_step是步长常选取为0.01;
% ufunc是函数名;
% x0是初始时间值;
% y0是初始化值; 
% n 是迭代步数;
      x = xspan(1):h_step:xspan(2);
      y = zeros(length(y0),length(x));
      y(:,1) = y0(:);
      %循环迭代数值求解部分
     for n=1 : (length(x)-1)
          k1=feval(dyfunc, x(n),y(:,n));
          k2=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k1);
          k3=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k2);
          k4=feval(dyfunc, x(n+1),y(:,n)+h_step*k3);
          y(:,n+1)=y(:,n)+h_step*(k1+2*k2+2*k3+k4)/6; 
          %按照4阶多变量龙格库塔方法进行数值求解
     end
end
clc;
clear all;
y0=[0,2,9];%初值
xspan = [0,200];%求解区间
h_step = 0.001;%ode45是变步长的算法
[x,y] = Runge_kutta45(@lorenz_diff,xspan,y0,h_step);
figure(1);
plot3(y(1,:),y(2,:),y(3,:),'.');title("x-y-z");
figure(2);
plot3(y(1,:),y(3,:),y(2,:),'.');title("x-z-y");
figure(3);
plot3(y(2,:),y(1,:),y(3,:),'.');title("y-x-z");
function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Matlab 函数库求解

[t, Xt] = ode45(odefun, tspan, X0)
odefun是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名
tspan是区间 [t0 tfinal] 或者一系列散点[t0,t1,…,tf]
X0是初始值向量
t返回列向量的时间点
Xt返回对应T的求解列向量

Lorenz系统
在这里插入图片描述

function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end
clc;
y0 = [0,2,9];
[t,y] = ode45('lorenz_diff',[0,200],y0); 
%% 调用ode45绘制Lorenz系统 2D
figure(1);
plot(y(:,1),y(:,3),'.');
xlabel('x');ylabel('z');title("x-z");
figure(2);
plot(y(:,1),y(:,2),'.');
xlabel('x');ylabel('y');title("x-y");
figure(3);
plot(y(:,2),y(:,3),'.');
ylabel('y');zlabel('z');title("y-z");

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%% 火焰传播数学模型求解
clc;
clear all;
delta=0.01;
f=@(t,y)y^2-y^3;
opts=odeset('Reltol',1.e-4);
[t1,y1]=ode45(f,[0  2/delta], delta, opts);
figure(1)
plot(t1,y1,'-','Marker','.');
title('数值解曲线');
ylabel('y'); xlabel('t');

在这里插入图片描述

目录
相关文章
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
14天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
25天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。