从小白开始刷算法 动态规划篇 leetcode.62

简介: 从小白开始刷算法 动态规划篇 leetcode.62

序言

虽然算法很难,但不应该就放弃。这是一个学习笔记,希望你们喜欢~

先自己尝试写,大概十几分钟仍然写不出来

看思路,再尝试跟着思路写

仍然写不出来,再看视频

b站up视频推荐:爱学习的饲养员

leetcode其他文章:

数组篇:

从小白开始刷算法 数组篇 leetcode.485

从小白开始刷算法 数组篇 leetcode.283

从小白开始刷算法 数组篇 leetcode.27

链表篇:

从小白开始刷算法 ListNode 链表篇 leetcode.203

从小白开始刷算法 ListNode 链表篇 leetcode.206

队列篇

从小白开始刷算法 ListNode 链表篇 leetcode.933

栈篇

从小白开始刷算法 Stack 栈篇 leetcode.20

从小白开始刷算法 Stack 栈篇 leetcode.496

哈希篇

从小白开始刷算法 Hash 哈希篇 leetcode.217

从小白开始刷算法 Hash 哈希篇 leetcode.705

树篇

从小白开始刷算法 Tree 树篇 先序遍历 leetcode.144

从小白开始刷算法 Tree 树篇 中序遍历 leetcode.94

从小白开始刷算法 Tree 树篇 后序遍历 leetcode.94

堆篇

从小白开始刷算法 Heap 堆篇 最大堆排序 leetcode.215

小白开始刷算法 Heap 堆篇 最小堆排序 leetcode.692

双指针篇

从小白开始刷算法 对撞双指针 leetcode.881

从小白开始刷算法 快慢双指针篇 leetcode.141

二分法篇

从小白开始刷算法 二分法篇 leetcode.704

从小白开始刷算法 二分法篇 leetcode.35

从小白开始刷算法 二分法篇 leetcode.162

从小白开始刷算法 二分法篇 leetcode.74

滑动窗口篇

从小白开始刷算法 滑动窗口篇 leetcode.209

从小白开始刷算法 滑动窗口篇 leetcode.1456

递归篇

从小白开始刷算法 递归篇 leetcode.509

从小白开始刷算法 递归篇 leetcode.206

分治法篇

从小白开始刷算法 分治法篇 leetcode.169

从小白开始刷算法 分治法篇 leetcode.53

回溯法篇

从小白开始刷算法 回溯法篇 leetcode.22

从小白开始刷算法 回溯法篇 leetcode.78

dfs篇

从小白开始刷算法 dfs篇 leetcode.938

从小白开始刷算法 dfs篇 leetcode.200

bfs篇

从小白开始刷算法 bfs篇 leetcode.102

并查集篇

从小白开始刷算法 并查集篇 leetcode.200

[从小白开始刷算法 并查集篇 leetcode.547

记忆化搜索篇

从小白开始刷算法 记忆化搜索篇 leetcode.509

从小白开始刷算法 记忆化搜索篇 leetcode.322

动态规划篇

从小白开始刷算法 动态规划篇 leetcode.509

动态规划篇

难度:简单

题目:

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7

输出:28

示例 2:

输入:m = 3, n = 2

输出:3

解释:

从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3

输出:28

示例 4:

输入:m = 3, n = 3

输出:6

题目来源:力扣(LeetCode)

动态规划思路

首先,将第一行和第一列的路径数量初始化为1,因为只有一条路径可以到达每个点。

从第二行第二列开始,通过动态规划的思想计算每个点的路径数量,即通过上方或左方的点到达当前点的路径数量之和。

最后,返回右下角点的路径数量作为结果。

// 仅是我的思路代码,leetcode上大神更厉害
class Solution {
  public int uniquePaths(int m, int n) {
      int[][] dp = new int[m][n];
      // 初始化第一行和第一列的路径数量为1,因为只有一条路径可以到达每个点
      for (int i = 0; i < m; i++) {
          dp[i][0] = 1;
      }
      for (int j = 0; j < n; j++) {
          dp[0][j] = 1;
      }
      // 从第二行第二列开始,计算每个点的路径数量
      for (int i = 1; i < m; i++) {
          for (int j = 1; j < n; j++) {
              dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
          }
      }
      // 返回右下角点的路径数量 m-1和n-1是索引位置,索引从0开始
      return dp[m - 1][n - 1];
  }
}

时间复杂度:O(MN)

空间复杂度:O(MN)

相关文章
|
1月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
57 1
|
1月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
14天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
13天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
30 2
|
1月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
68 2
动态规划算法学习三:0-1背包问题
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
26 2
|
1月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
65 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
1月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
124 0
动态规划算法学习二:最长公共子序列
|
1月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
下一篇
无影云桌面