m基于NB-IoT网络的SWAP资源分配优化算法matlab仿真

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
简介: m基于NB-IoT网络的SWAP资源分配优化算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

d1b37582bc25cc03696561ff3dcfba55_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
737b22de9c7c3d5438cc95b742a0f768_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fb7d5bb4f480274a82d9fcff935514c8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
d899423033ea9839c956014ee3cd29f5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
NB-IoT是一种新兴的低功耗广域物联网(LPWAN)通信技术,它可以实现低功耗、低成本、大容量和广覆盖的特点,适用于物联网应用场景。在NB-IoT网络中,由于物联网设备的数量较大、通信频率较低、数据量较小等特点,资源分配成为一项重要的挑战。因此,为了提高NB-IoT网络的资源利用效率和通信质量,需要设计适合NB-IoT网络的资源分配优化算法。

   SWAP(Sleep-Work-Active-Power)是一种适用于NB-IoT网络的资源管理策略,它通过设备的睡眠、工作和活跃三种状态的切换来实现能量的节约和通信质量的保证。在睡眠状态下,设备仅仅保持最小的能量消耗,可以大大延长设备的寿命;在工作状态下,设备会进行数据采集和传输;在活跃状态下,设备会占用更多的资源进行高速的数据传输。SWAP策略可以平衡设备的能量消耗和通信质量,因此成为了一种适合NB-IoT网络的资源管理策略。

    在NB-IoT网络中,资源分配的主要问题是如何在有限的资源下,通过合理的调度策略,满足物联网设备的通信需求。针对这一问题,可以采用基于SWAP的资源分配优化算法,通过合理的睡眠、工作和活跃状态的切换,来提高NB-IoT网络的资源利用效率和通信质量。

基于SWAP的资源分配优化算法主要包括以下几个步骤:
设备状态切换策略的设计:根据NB-IoT网络中设备的特点,可以设计合理的设备状态切换策略。一般地,设备在初始状态下处于睡眠状态,当需要采集传感器数据时,设备会切换至工作状态进行数据采集和传输;当数据传输完成后,设备会切换回睡眠状态,以便节约能量。当设备需要进行高速数据传输时,会切换至活跃状态,占用更多的资源进行数据传输。
资源分配算法的设计:根据设备的状态切换策略,设计合理的资源分配算法。一般地,资源分配算法需要考虑设备的通信需求、网络的拥塞情况以及设备的电量等因素。通过对这些因素的综合考虑,可以设计出一种能够平衡能量消耗和通信质量的资源分配算法。
资源分配策略的实现:在NB-IoT网络中,资源分配策略的实现需要考虑到网络的拥塞情况、设备的状态以及电量等因素。一般地,可以采用动态调整的方式来实现资源分配策略。具体地,当网络拥塞时,可以通过调整设备的状态,降低设备的数据传输速率,以减轻网络拥塞;当设备电量不足时,可以通过降低设备的采样频率或者将设备切换至睡眠状态来节约能量。
算法的评估和优化:为了评估算法的性能,需要采用一定的评估指标。一般地,可以采用能量消耗、通信质量等指标来评估算法的性能。如果算法的性能不够优秀,可以通过优化算法的设计和实现来提高算法的性能。
综上所述,基于SWAP的资源分配优化算法可以提高NB-IoT网络的资源利用效率和通信质量。在实际应用中,需要根据具体的应用场景和设备特点,设计合理的资源分配算法和策略,以达到最优的通信效果和能量消耗。

3.MATLAB核心程序

load GS\R2.mat
plot(N2,SUCC,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
load SWAP\R2.mat
plot(N2,SUCC,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
legend('GS','SWAP');
xlabel('UE数量');
ylabel('连接成功率');
grid on

ylim([0.1,1]);



figure;
load GS\R3.mat
plot(M2,SUCC,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
load SWAP\R3.mat
plot(M2,SUCC,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
legend('GS','SWAP');
xlabel('Num of channels');
ylabel('连接成功率');
grid on
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
相关文章
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
79 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
2天前
|
算法 图形学 数据安全/隐私保护
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
|
1天前
|
算法 数据安全/隐私保护
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
|
12天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
8天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
152 68
|
8天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。

热门文章

最新文章