【数据结构】--- 博主拍了拍你并向你扔了一“堆”二叉树(堆的概念+结构+代码实现)

简介: 数据结构学习第十三弹——二叉树——堆的概念+结构+代码实现

🌟一、二叉树的顺序结构及实现:


🌟二、堆的概念及结构:


如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

完全二叉树

大堆:树任何一个父亲都大于或等于孩子

小堆:树任何一个父亲都小于或等于孩子

🌟三、堆的代码实现:


对于堆的代码实现无非就是先定义结构,包括 初始化 插入 删除堆顶元素 堆顶数据 堆数据个数 判空 释放

🌏3.1 堆的创建:


下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

🌏3.2 堆的结构:


#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int HPDataType;
typedef struct Heap
{
  HPDataType* a;
  int size;
  int capacity;
}HP;
void HeapInit(HP* php);
void HeapDestroy(HP* php);
void HeapPush(HP* php, HPDataType x);
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
bool HeapEmpty(HP* php);
int HeapSize(HP* php);

🌏3.4 堆的插入:


💫3.4.1 堆向上调整算法:


向堆中插入数据,需要使用向上调整算法调整,因为向堆中插入数据是将数据插入到下标为size的位置,此时就不满足小堆 (大堆),因此,需要堆其进行调整,向上调整算法和向下调整算法思路类似,此处以小堆为例,向上调整法只需从插入的节点位置开始和父节点比较。

📝3.4.1.1 代码(以小堆为例):


void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;
  while (child>0)
  {
    if (a[child] < a[parent])
    {
      HPDataType tmp = a[child];
      a[child] = a[parent];
      a[parent] = tmp;
      child = parent;
      parent = (child - 1) / 2;
    }
    else
    {
      break;
    }
  }
}

📝3.4.1.2 流程图:


💫3.4.2 堆向上调整算法(插入):


void HeapPush(HP* php, HPDataType x)
{
  assert(php);
  if (php->size == php->capacity)
  {
    int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType* tmp = (HPDataType*)realloc(php->a,sizeof(HPDataType) * newCapacity);
    if (tmp == NULL)
    {
      perror("realloc fail");
      return;
    }
    php->a = tmp;
    php->capacity = newCapacity;
  }
  php->a[php->size] = x;
  AdjustUp(php->a, php->size);//堆向上调整算法
  php->size++;
}

🌏3.5 堆的删除(删除堆顶元素):


对于堆顶元素的删除,可能想到了覆盖,但是覆盖显然是不太满足的因为当我们删除堆顶元素本来关系为兄弟的节点就变成了父子等导致关系错乱(一旦关系错乱就导致不满足大堆/小堆中双亲与子孙的关系—小堆为例双亲小于孩子)

如图:

所以我们另辟蹊径:先交换堆顶数据和最后一个数据这样中间的关系并没有造成混乱,然后数据个数减减,之后调整最后一个数据交换上去后的堆(只需要比较这个堆顶元素和孩子的关系达到满足关系) — 先比较它的两个孩子(左孩子和右孩子)大小关系,找到小的一方再和堆顶数据比较若小其则交换依次往后比较交换直到孩子的下标>=数据个数就停止。

注意一点:可能它只有左孩子没有右孩子,所以我们要对右孩子判断一下右孩子下标要小于堆数据个数才行不然就越界了

💫3.5.1 堆向下调整算法:


现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

📝3.5.1.1 代码(以小堆为例):


void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;//假设左孩子小
  while (child<n)
  {
    if (child+1<n&&a[child + 1] < a[child])
    //child+1<n判断右孩子下标满足不越界再比较
    //a[child + 1] < a[child]右孩子<左孩子,就代表右孩子小child++就是右孩子
    {
      child++;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}

📝3.5.1.2 流程图:

💫3.5.2 堆向下调整算法(删除):

void HeapPop(HP* php)
{
  assert(php);
  assert(!HeapEmpty(php));
  //首尾交换
  Swap(&php->a[0], &php->a [php->size - 1]);
  php->size--;
  AdjustDown(php->a, php->size, 0);
}

🌏3.6 堆的堆顶数据:

HPDataType HeapTop(HP* php)
{
  assert(php);
  assert(!HeapEmpty(php));
  return php->a[0];
}

🌏3.7 堆的堆数据个数:


int HeapSize(HP* php)
{
  assert(php);
  return php->size;
}

🌏3.8 判空:


bool HeapEmpty(HP* php)
{
  assert(php);
  return php->size == 0;
}

🌏3.9 释放:


void HeapDestroy(HP* php)
{
  assert(php);
  free(php->a);
  php->a = NULL;
  php->capacity = php->size = 0;
}

🌟四、堆实现的完整代码:


//Heap.h
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int HPDataType;
typedef struct Heap
{
  HPDataType* a;
  int size;
  int capacity;
}HP;
void HeapInit(HP* php);
void HeapDestroy(HP* php);
void HeapPush(HP* php, HPDataType x);
void HeapPop(HP* php);
HPDataType HeapTop(HP* php);
bool HeapEmpty(HP* php);
int HeapSize(HP* php);
//Heap.c
#include"Heap.h"
void HeapInit(HP* php)
{
  assert(php);
  php->a = NULL;
  php->size = 0;
  php->capacity = 0;
}
void HeapDestroy(HP* php)
{
  assert(php);
  free(php->a);
  php->a = NULL;
  php->capacity = php->size = 0;
}
void Swap(HPDataType* p1, HPDataType* p2)
{
  HPDataType tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;
  while (child>0)
  {
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      child = parent;
      parent = (child - 1) / 2;
    }
    else
    {
      break;
    }
  }
}
void HeapPush(HP* php, HPDataType x)
{
  assert(php);
  if (php->size == php->capacity)
  {
    int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType* tmp = (HPDataType*)realloc(php->a,sizeof(HPDataType) * newCapacity);
    if (tmp == NULL)
    {
      perror("realloc fail");
      return;
    }
    php->a = tmp;
    php->capacity = newCapacity;
  }
  php->a[php->size] = x;
  AdjustUp(php->a, php->size);
  php->size++;
}
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child<n)
  {
    if (child+1<n&&a[child + 1] < a[child])
    {
      child++;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[parent], &a[child]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
//删除堆顶数据
void HeapPop(HP* php)
{
  assert(php);
  assert(!HeapEmpty(php));
  //首尾交换
  Swap(&php->a[0], &php->a [php->size - 1]);
  php->size--;
  AdjustDown(php->a, php->size, 0);
}
HPDataType HeapTop(HP* php)
{
  assert(php);
  assert(!HeapEmpty(php));
  return php->a[0];
}
bool HeapEmpty(HP* php)
{
  assert(php);
  return php->size == 0;
}
int HeapSize(HP* php)
{
  assert(php);
  return php->size;
}
//Test.c
#include"Heap.h"
void HPTest()
{
  HP hp;
  HeapInit(&hp);
  int a[] = { 65,100,70,32,50,60 };
  for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++)
  {
    HeapPush(&hp, a[i]);
  }
  while (!HeapEmpty(&hp))
  {
    int top = HeapTop(&hp);
    printf("%d\n", top);
    HeapPop(&hp);
  }
}
int main()
{
  HPTest();
  return 0;
}

🌟五、堆伏笔:


对于上述代码实现后,运行会发现以小堆为例我们完成的堆是一个有序的顺序,这就为下一章对于堆的应用做了一个铺垫

😽总结


😽Ending,今天的二叉树 — 堆的概念+结构+代码实现 的内容就到此结束啦~,如果后续想了解更多,就请关注我吧。

相关文章
|
1月前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
41 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
27天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
60 1
|
1月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
92 16
|
2月前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
34 1
|
2月前
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
103 1
|
2月前
|
存储 算法 索引
HashMap底层数据结构及其增put删remove查get方法的代码实现原理
HashMap 是基于数组 + 链表 + 红黑树实现的高效键值对存储结构。默认初始容量为16,负载因子为0.75。当存储元素超过容量 * 负载因子时,会进行扩容。HashMap 使用哈希算法计算键的索引位置,通过链表或红黑树解决哈希冲突,确保高效存取。插入、获取和删除操作的时间复杂度接近 O(1)。
32 0
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
214 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
37 1
|
28天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
54 5
|
1月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。

热门文章

最新文章