【数据结构】- 几个步骤教你认识并实现一个链表之带头(哨兵位)双向循环链表(中)

简介: 数据结构学习第八弹——链表之带头双向循环链表(中)

🌟一、带头双向循环链表


🌏1.1头删:


💫1.1.1代码:


void LTPopFront(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;
  phead->next = cur->next ;
  cur->next->prev = phead;
  free(cur);
}

💫1.1.2流程图:


定义一个指针时:(代码如上图)

定义两个指针时:(建议使用两个—代码如下图)

🌏1.2尾删:


💫1.2.1代码:


void LTPopBack(LTNode* phead)
{
  assert(phead);
  assert(!LTEmpty(phead));
  LTNode* tail = phead->prev;
  LTNode* tailPrev = tail->prev;
  free(tail);
  phead->prev = tailPrev;
  tailPrev->next = phead;
}

💫1.2.2流程图:


第一种:

第二种:

第三种:需要注意

🌏1.3查找:


LTNode* LTFind(LTNode* phead, LTDataType x)
{
  assert(phead);
  LTNode* cur = phead->next;
  while (cur != phead)
  {
    if (cur->data == x)
    {
      return cur;
    }
    cur = cur->next;
  }
  return NULL;
}

🌏1.4在pos位置之前插入:


💫1.4.1代码:


void LTInsert(LTNode* pos, LTDataType x)
{
  assert(pos);
  LTNode* newnode = BuyLTNode(x);
  pos->prev->next  = newnode;
  newnode->prev = pos->prev;
  newnode->next = pos;
  pos->prev = newnode;
  //第二种:
  ///LTNode* prev = pos->prev;
  //prev->next = newnode;
  //newnode->prev = prev;
  //pos->prev = newnode;
  //newnode->next = pos;
}

💫1.4.2流程图:


第一种:

第二种:

🌏1.5在pos位置删除:


💫1.5.1代码:


void LTErase(LTNode* pos)//要注意不能传哨兵位
{
  assert(pos);
  LTNode* posPrev = pos->prev;
  LTNode* posNext = pos->next;
  posPrev->next = posNext;
  posNext->prev = posPrev;
  free(pos);
}

💫1.5.2流程图:


🌏1.6释放链表:


void LTDestroy(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;
  while (cur != phead)
  {
    LTNode* next = cur->next;
    free(cur);
    cur = next;
  }
  free(phead);
}

🌟二、完整带头双向循环链表


//List.h
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int LTDataType;
typedef struct ListNode
{
  struct ListNode* next;
  struct ListNode* prev;
  LTDataType data;
}LTNode;
LTNode* LTInit();
void LTNodePrint(LTNode* phead);
bool LTEmpty(LTNode* phead);
void LTPushFront(LTNode* phead, LTDataType x);
void LTPushBack(LTNode* phead, LTDataType x);
void LTPopFront(LTNode* phead);
void LTPopBack(LTNode* phead);
LTNode* LTFind(LTNode* phead, LTDataType x);
//在pos之前插入
void LTInsert(LTNode* pos, LTDataType x);
//删除pos位置的值
void LTErase(LTNode* pos);
void LTDestroy(LTNode* phead);
//List.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"
bool LTEmpty(LTNode* phead)
{
  assert(phead);
  return phead->next == phead;
}
LTNode* BuyLTNode(LTDataType x)
{
  LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
  }
  newnode->data = x;
  newnode->next = NULL;
  newnode->prev = NULL;
  return newnode;
}
LTNode* LTInit()
{
  LTNode* phead = BuyLTNode(-1);
  phead->next = phead;
  phead->prev = phead;
  return phead;
}
void LTNodePrint(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;
  printf("guard<==>");
  while (cur != phead)
  {
    printf("%d<==>", cur->data);
    cur = cur->next;
  }
  printf("\n");
}
void LTPushFront(LTNode* phead, LTDataType x)
{
  LTNode* newnode = BuyLTNode(x);
  LTNode* cur = phead->next;
  newnode->prev = phead;
  phead->next = newnode;
  newnode->next = cur;
  cur->prev = newnode;
}
void LTPushBack(LTNode* phead, LTDataType x)
{
  assert(phead);
  LTNode* newnode = BuyLTNode(x);
  LTNode* tail = phead->prev;
  tail->next = newnode;
  newnode->prev = tail;
  newnode->next = phead;
  phead->prev = newnode;
}
void LTPopFront(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;
  //LTNode* next = cur->next;
  phead->next = cur->next ;
  cur->next->prev = phead;
  free(cur);
}
void LTPopBack(LTNode* phead)
{
  assert(phead);
  assert(!LTEmpty(phead));
  LTNode* tail = phead->prev;
  LTNode* tailPrev = tail->prev;
  free(tail);
  phead->prev = tailPrev;
  tailPrev->next = phead;
}
LTNode* LTFind(LTNode* phead, LTDataType x)
{
  assert(phead);
  LTNode* cur = phead->next;
  while (cur != phead)
  {
    if (cur->data == x)
    {
      return cur;
    }
    cur = cur->next;
  }
  return NULL;
}
void LTInsert(LTNode* pos, LTDataType x)
{
  assert(pos);
  LTNode* newnode = BuyLTNode(x);
  pos->prev->next  = newnode;
  newnode->prev = pos->prev;
  newnode->next = pos;
  pos->prev = newnode;
  //第二种:
  ///LTNode* prev = pos->prev;
  //prev->next = newnode;
  //newnode->prev = prev;
  //pos->prev = newnode;
  //newnode->next = pos;
}
void LTErase(LTNode* pos)//要注意不能传哨兵位
{
  assert(pos);
  LTNode* posPrev = pos->prev;
  LTNode* posNext = pos->next;
  posPrev->next = posNext;
  posNext->prev = posPrev;
  free(pos);
}
void LTDestroy(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;
  while (cur != phead)
  {
    LTNode* next = cur->next;
    free(cur);
    cur = next;
  }
  free(phead);
}
//Test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"
void TestList()
{
  LTNode* plist = LTInit();
  LTPushBack(plist, 1);
  LTPushBack(plist, 2);
  LTPushBack(plist, 3);
  LTPushBack(plist, 4);
  LTNodePrint(plist);
  //LTPushFront(plist, 1);
  //LTPushFront(plist, 2);
  //LTPushFront(plist, 3);
  //LTPushFront(plist, 4);
  //LTNodePrint(plist);
  /*LTPopBack(plist);
  LTNodePrint(plist);*/
  /*LTPopFront(plist);
  LTNodePrint(plist);*/
  /*LTNode* pos = LTFind(plist,3);
  if (pos)
  {
    LTInsert(pos, 30);
  }
  LTNodePrint(plist);*/
  LTNode* pos = LTFind(plist, 2);
  if (pos)
  {
    LTErase(pos, 30);
  }
  LTNodePrint(plist);
  LTDestroy(plist);
  plist = NULL;
}
int main()
{
  TestList();
  return 0;
}

😽总结


😽Ending,今天的链表之带头双向循环链表(中)的内容就到此结束啦~,如果后续想了解更多,就请关注我吧。

相关文章
|
1月前
|
存储 算法 Perl
数据结构实验之链表
本实验旨在掌握线性表中元素的前驱、后续概念及链表的建立、插入、删除等算法,并分析时间复杂度,理解链表特点。实验内容包括循环链表应用(约瑟夫回环问题)、删除单链表中重复节点及双向循环链表的设计与实现。通过编程实践,加深对链表数据结构的理解和应用能力。
59 4
|
1天前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
28天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
54 5
|
1月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
50 0
|
1月前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
69 0
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
213 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
37 1
|
1月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
1月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
1月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
52 4

热门文章

最新文章