阿里云机器学习平台PAI论文入选 SIGMOD 2023

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云机器学习平台PAI和北京大学杨智老师团队合作的论文被SIGMOD 2023录用。

近日,阿里云机器学习平台PAI和北京大学杨智老师团队合作的论文《GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning》被SIGMOD 2023录用。论文通过对深度学习数据预处理流水线的弹性伸缩,大幅提升了训练性能和集群资源利用效率。

SIGMOD是数据库与数据管理系统领域的国际顶级会议,自1975年首次举办以来,一直对数据管理、存储和处理的发展起着深刻的推动作用,在学术和工业界均有巨大影响力。SIGMOD也重视数据管理系统与其他方向的交叉,尤其近年来也对机器学习和人工智能领域格外关注。此次入选意味着阿里云机器学习平台PAI在深度学习数据处理方向达到了全球业界先进水平,获得了国际学者的认可,展现了中国机器学习系统技术创新在国际上的竞争力。


近年来,随着GPU加速器的不断进化,以及各类软件优化技术的层出不穷,深度学习训练的计算效率正不断被提升到新的层次。但与此同时,深度学习本质上仍是一种多阶段、多资源的任务类型:不仅需要在GPU上进行大量的训练计算,同时往往也需要CPU端的数据预处理流水线(如数据增强、特征转换等),这类预处理计算是训练出高质量模型的必要步骤。因此,GPU端训练性能的提升也带来了更大的数据预处理压力,使后者成为新的性能瓶颈。


针对这一问题,在观察后发现数据预处理流水线具有无状态的特点,具有内在的资源弹性。基于此,GoldMiner将数据预处理流水线和模型训练部分分离执行,通过自动计算图分析来识别无状态的数据预处理计算,并对其实现高效的并行加速和弹性伸缩,从而缓解数据预处理瓶颈,提升训练性能。通过与集群调度器的协同设计,GoldMiner进一步发挥了数据预处理计算的资源弹性,大幅提升集群调度效率。实验显示GoldMiner可提升训练性能最高达12.1倍,提升GPU集群利用率达2.5倍。


目前阿里云机器学习平台 PAI正在将GoldMiner与PAI-DLC集成,以向用户提供数据预处理加速能力。机器学习平台PAI面向企业客户及开发者,提供轻量化、高性价比的云原生机器学习,涵盖PAI-DSW交互式建模、PAI-Designer可视化建模、PAI-DLC分布式训练到PAI-EAS模型在线部署的全流程。其中PAI-DLC提供了云原生一站式的深度学习训练平台,提供灵活、稳定、易用和高性能的机器学习训练环境。支持多种算法框架,超大规模分布式深度学习任务运行及自定义算法框架,为开发者和企业降本增效。


阿里云机器学习平台PAI论文入选 SIGMOD 2023

论文标题:

GoldMiner: Elastic Scaling of Training Data Pre-Processing Pipelines for Deep Learning

论文作者:

赵汉宇,杨智,程羽,田超,任仕儒,肖文聪,袁满,陈浪石,刘恺博,张杨,李永,林伟

论文pdf链接:

https://dl.acm.org/doi/pdf/10.1145/3589773

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
4天前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
45 23
|
25天前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
机器学习-点击率预估-论文速读-20240916
机器学习-点击率预估-论文速读-20240916
42 0
|
2月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
251 14
|
7月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
132 1
|
7月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

相关产品

  • 人工智能平台 PAI
  • 下一篇
    DataWorks