力扣---LeetCode27. 移除元素

简介: 第三弹——力扣LeetCode每日一题

前言


我不停奔跑 只为追赶当年被寄予厚望的自己

本章的内容是力扣每日随机一题的部分方法的解析

提示:以下是本篇文章正文内容,下面案例可供参考

27. 移除元素


给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

方法一:暴力求解法


时间复杂度O(N^2)

空间复杂度O(1)

按最坏的情况第一个就nums[i]=val时间复杂度是O(N^2)

当我们判断nuns[i]==val时nums[j]=nums[j+1]要加上步骤numsSize–(这个步骤应该没有疑问因为我们是将后面的数字覆盖相同时的数字)但是为何加上i–,可以看下图解析

int removeElement(int* nums, int numsSize, int val)
{
    int i=0;
    for(i=0;i<numsSize;i++)
    {
        if(nums[i]==val)
        {
            int j=0;
            for(j=i;j<numsSize-1;j++)
            {
                nums[j]=nums[j+1];
            }
            numsSize--;
            i--;
        }
    }
    return numsSize;
}

方法二:空间换时间


时间复杂度O(N)

空间复杂度O(N)

int removeElement(int* nums, int numsSize, int val)
{
  int* tmp = (int*)malloc(sizeof(int) * numsSize);
  int j = 0;
  int i = 0;
  for (i = 0; i < numsSize; i++)
  {
    if (nums[i] != val)
    {
      tmp[j++] = nums[i];
    }
  }
  for (i = 0; i < j; i++)
  {
    nums[i] = tmp[j];
  }
  return j;
}

方法三:双指针


时间复杂度O(N)

空间复杂度O(1)

双指针,指的是在遍历对象的过程中,不是普通的使用单个指针进行访问,而是使用两个相同方向(快慢指针)或者相反方向(对撞指针)的指针进行扫描,从而达到相应的目的。

int removeElement(int* nums, int numsSize, int val)
{
    int src=0;
    int dest=0;
    while(src<numsSize)
    {
        if(nums[src]!=val)
        {
        nums[dest++]=nums[src++];
        }
        else
        {
            src++;
        }
    }
    return dest;
}

总结


Ending,今天的力扣每日一题内容就到此结束啦,如果后续想了解更多,就请关注我吧。

相关文章
【力扣】-- 移除链表元素
【力扣】-- 移除链表元素
163 1
|
8月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
534 90
|
7月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
332 14
|
6月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
292 1
|
6月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
298 1
|
6月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
223 0
|
6月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
278 0
|
8月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
220 10
|
8月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
217 4
【LeetCode 27】347.前k个高频元素
【LeetCode 27】347.前k个高频元素
140 0

热门文章

最新文章