转:KNN 算法,从邻居预测未来

简介: KNN (K-Nearest Neighbors) 算法是一种常用的分类与回归方法。它的基本思想是对于给定的一个样本,在训练数据集中寻找与它最近的K个邻居,通过这K个邻居的信息来预测这个样本的类别或数值。

KNN (K-Nearest Neighbors) 算法是一种常用的分类与回归方法。它的基本思想是对于给定的一个样本,在训练数据集中寻找与它最近的K个邻居,通过这K个邻居的信息来预测这个样本的类别或数值。

KNN算法可以用于分类(比如手写识别)和回归(比如预测房价)问题。它的基本流程如下:

  1. 准备训练数据:需要准备一组有标签的数据,这些数据将用于训练KNN模型。
  2. 计算样本与训练数据的距离:需要选择一个合适的距离公式来衡量样本与训练数据的相似度。
  3. 选择K个最近邻居:选择与该样本距离最近的K个训练数据。
  4. 对这K个邻居进行分类:如果该样本是分类问题,则对这K个邻居进行投票,票数最多的类别即为该样本的预测类别。如果该样本是回归问题,则对这K个邻居的值进行简单统计,例如取平均值作为该样本的预测值。
    K的选择对KNN算法的结果有很大影响。通常情况下,K应该取一个较小的值,例如3~5。如果K值较小,则模型具有较强的鲁棒性;如果K值较大,则模型具有较强的稳健性,但容易受到噪声的影响。

KNN算法的优势:

  1. 简单易理解:KNN算法极其简单,可以使用不同的距离公式,它实际上是对训练数据进行了一个“数据压缩”,每个样本用其最近的邻居代替。
  2. 容易实现:KNN算法没有什么参数需要调整,只需要设置K的值。
  3. 精度高:KNN算法具有很高的精度,在很多问题上可以达到最优解。
    KNN算法的弱点:
  4. 容易受到噪声的影响:KNN算法容易受到异常值的影响,因为它的预测结果只取决于K个邻居。
  5. 计算复杂度高:KNN算法的计算复杂度随着样本数量的增加而增加,因此在大数据集上的性能很差。
    KNN算法的开源库有很多,包括scikit-learn(Python),Weka(Java)等。在各编程语言中,KNN算法的代码示例也很多,下面是一个简单的Python代码:
    import numpy as np
    from sklearn import datasets
    from sklearn.neighbors import KNeighborsClassifier

    加载数据集

    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    实例化KNN分类器

    knn = KNeighborsClassifier(n_neighbors=5)

    训练模型

    knn.fit(X, y)

    预测样本的类别

    pred = knn.predict([[3, 5, 4, 2]])
    print(pred)

这是一个使用scikit-learn库实现KNN算法的代码示例。它加载了Iris数据集,并使用KNN分类器对数据进行训练,最后对一个样本进行预测。
image.png

本文转载自:https://www.vipshare.com/archives/40237

目录
相关文章
|
1月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
2月前
|
算法 Python
KNN
【9月更文挑战第11天】
49 13
|
2月前
|
算法 大数据
K-最近邻(KNN)
K-最近邻(KNN)
|
2月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
knn增强数据训练
【7月更文挑战第27天】
37 10
|
4月前
knn增强数据训练
【7月更文挑战第28天】
40 2
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
12天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。