转:KNN 算法,从邻居预测未来

简介: KNN (K-Nearest Neighbors) 算法是一种常用的分类与回归方法。它的基本思想是对于给定的一个样本,在训练数据集中寻找与它最近的K个邻居,通过这K个邻居的信息来预测这个样本的类别或数值。

KNN (K-Nearest Neighbors) 算法是一种常用的分类与回归方法。它的基本思想是对于给定的一个样本,在训练数据集中寻找与它最近的K个邻居,通过这K个邻居的信息来预测这个样本的类别或数值。

KNN算法可以用于分类(比如手写识别)和回归(比如预测房价)问题。它的基本流程如下:

  1. 准备训练数据:需要准备一组有标签的数据,这些数据将用于训练KNN模型。
  2. 计算样本与训练数据的距离:需要选择一个合适的距离公式来衡量样本与训练数据的相似度。
  3. 选择K个最近邻居:选择与该样本距离最近的K个训练数据。
  4. 对这K个邻居进行分类:如果该样本是分类问题,则对这K个邻居进行投票,票数最多的类别即为该样本的预测类别。如果该样本是回归问题,则对这K个邻居的值进行简单统计,例如取平均值作为该样本的预测值。
    K的选择对KNN算法的结果有很大影响。通常情况下,K应该取一个较小的值,例如3~5。如果K值较小,则模型具有较强的鲁棒性;如果K值较大,则模型具有较强的稳健性,但容易受到噪声的影响。

KNN算法的优势:

  1. 简单易理解:KNN算法极其简单,可以使用不同的距离公式,它实际上是对训练数据进行了一个“数据压缩”,每个样本用其最近的邻居代替。
  2. 容易实现:KNN算法没有什么参数需要调整,只需要设置K的值。
  3. 精度高:KNN算法具有很高的精度,在很多问题上可以达到最优解。
    KNN算法的弱点:
  4. 容易受到噪声的影响:KNN算法容易受到异常值的影响,因为它的预测结果只取决于K个邻居。
  5. 计算复杂度高:KNN算法的计算复杂度随着样本数量的增加而增加,因此在大数据集上的性能很差。
    KNN算法的开源库有很多,包括scikit-learn(Python),Weka(Java)等。在各编程语言中,KNN算法的代码示例也很多,下面是一个简单的Python代码:
    import numpy as np
    from sklearn import datasets
    from sklearn.neighbors import KNeighborsClassifier

    加载数据集

    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    实例化KNN分类器

    knn = KNeighborsClassifier(n_neighbors=5)

    训练模型

    knn.fit(X, y)

    预测样本的类别

    pred = knn.predict([[3, 5, 4, 2]])
    print(pred)

这是一个使用scikit-learn库实现KNN算法的代码示例。它加载了Iris数据集,并使用KNN分类器对数据进行训练,最后对一个样本进行预测。
image.png

本文转载自:https://www.vipshare.com/archives/40237

目录
相关文章
|
3月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
3月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
4月前
|
算法 Python
KNN
【9月更文挑战第11天】
66 13
|
4月前
|
算法 大数据
K-最近邻(KNN)
K-最近邻(KNN)
|
4月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
6月前
knn增强数据训练
【7月更文挑战第27天】
50 10
|
6月前
knn增强数据训练
【7月更文挑战第28天】
60 2
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
14天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章