人工智能威胁你工作?你可能不需要「那么」担心

简介: 人工智能威胁你工作?你可能不需要「那么」担心

💡大家好,我是可夫小子,关注AIGC、读书和自媒体。解锁更多ChatGPT、AI绘画玩法。

最近,AI似乎成为全互联网的焦点了。谷歌在2023IO开发者大会上,重磅发布了PaLM2和生成式对话Bard《两分钟速览谷歌2023IO大会:AI军备竞争,全线出击》。OpenAI随即又在推特发消息称,本周对所有ChatGPT Plus用户开发联网和插件功能。周末,Claude instant 100k的模型又在朋友圈疯传《Claude不能用了?我来帮你》,输入能力提升到10万token,大约7万5千字,也就是说,两分钟讲完一部短篇小说,现在有人拿它分析鲁迅的《野草》散文集,测试效果还不错。

AI一日,人间一年。AI的快速迭代更新,已经渗透到各行各业。AI是否能代替的大部分人工作的讨论,似乎也一直伴随着AI的发展。但是,上周《经济学人》的一篇文章,提出了不一样的观点——AI并不能代替大多数人的工作。花了3000字左右的长篇幅来说明,为什么 AI 对于经济发展的影响被夸大了,而人们的工作可能不会受到人工智能的威胁。

这是一家权威经济媒体,也算是不一样的声音,引用大量的技术革新历史,值得我们思考。

简单讲,经济学人认为,AI能够带来的经济增长其实还很有限。以美国铁路为例,过往单一技术的全面导入,实证研究发现这并不是造成经济变革的唯一因素。人们的工作可能会受影响,但是旧工作的消失比你想像中更慢,而且无法自动化的新工作也会因此被发明出来。政府的强力监管,依旧会保障许多工作不受 AI 取代;同时,政府行政与规划能力的低落,也会大幅抵销 AI 所带来的效率与生产力。为了制衡 AI 带来的负面效应,我们可能得付出更多成本,包含律师、教师、编辑与银行风控等。

我通读下来,认为你全文倒也并不是说「不能代替在多数人工作」,只是这个「代替」,从历史情况来看,是会持续一个很长的时间。并且,也在政府的干预下,温和「代替」。拥抱AI,还是没错的。

以下是我人工整理的摘要,原文链接放到最后。

题目:你的工作 (可能) 不会受到人工智能的威胁 – 为何关于经济革命的预测被夸大了

生成式人工智能的时代确实已经来临。OpenAI 的聊天机器人利用大型语言模型 (LLM) 技术,在去年11月开创了新局。直到现在,几乎每天都有令人震惊的进步。随着科技巨头之间的竞争加剧,AI 前端技术的演进与释出,可能会更为加速。

市场上的预测被夸大了

人工智能的发展,带出了一连串深远的问题。在这当中,最迫切的,也许正是这个直接了当的问题:这会对我们的经济造成什么影响?
许多人对此有着很大的期待。高盛的最新研究表示:“广泛的 AI 采用最终可能在十年内每年推动全球GDP增长7%,接近7兆美元。”相关学术研究指出,采用这项技术的企业的劳动生产力年增长,可能会提高3%。这代表在未来许多年里,企业可能会有巨大的收入增长。
然而,金融市场的实际反应却相对温和。在过去一年中,人工智能相关公司的股价表现,还不如全球股市的平均水平。
利率是另一个线索。如果人们认为这项技术,将使每个人在明天变得更富有,那么利率将会攀升,因为人们对储蓄的需求会减少。(反正明天就发大财了,谁还跟你辛苦储蓄)
麻省理工学院 Basil Halperin的研究指出,通膨调整后的利率和随后的GDP增长,有着强烈的相关性。然而,自从去年11月AI 相关题材的炒作开始至今,长期利率已经下降,并且远低于过往历史标准。研究人员得出的结论是,金融市场目前并不期待在未来30到50年内会有很高的机率,出现由 AI 引发的大幅经济增长加速。

并非只是纺织机推动了工业革命

回到1700年代末的工业革命,许多人认为单纯就是因为纺织机的发明而带动的,但实际上则是有多个因素交互影响:像是增加煤炭的使用、更可靠稳固的财产权科学精神的出现,以及其他许多因素。

也许最著名的例证是,1960年代美国经济学家 Robert Fogel 发表了关于美国铁路的研究结果,这让他获得了经济学诺贝尔奖。当时许多人认为,是铁路改变了美国的前景,将一个农业社会转变成一个工业强国。但事实上,Fogel 发现,铁路的影响非常小,因为铁路所取代的技术,像是运河之类的,几乎也能达到一样好的效果。即使没有发明铁路,美国在1890年初的每人收入水平,最多也只是晚三个月就能达成。
当然,没有人可以确定地预测,像人工智能这样的新技术,未来将如何带领人类。但你仍然可以思考各种可能性。至少到目前为止,Fogel 对于美国铁路影响的研究,似乎有机会作为一个有用的对照蓝图。

多种因素发酵,才能促进经济发展

在这个研究中,Fogel 考虑了三个广泛的领域:垄断、劳动市场和生产力。

首先,关于垄断。新技术有时会创造出,一小群具有巨大经济力量的人。洛克菲勒在石油精炼领域取得胜利,亨利·福特在汽车领域获得巨大成功。时至今日,贝佐斯和马克·祖克柏也因为掌握科技,而显得相当卓越出众。

许多评论家预期,在不久的将来,人工智能产业将创造出巨大的利润。在最近的一篇报告中,高盛的分析师估计,在最佳情况下,生成式人工智能每年可能为全球企业软体收入增加约4,300亿美元。他们的计算假设,全球11亿的办公室工作者,每人将采用数个人工智能工具,每人每年共支付约400美元。

任何企业都会很高兴能分得这笔钱。但在宏观经济条件下,4300亿美元并不会为整体经济带来什么大的改变。假设所有的收入都变成利润,虽然这是不现实的;说这些这些利润都在美国赚来的,还比较实际一些。即使在上述这些条件下,美国的企业税前利润与GDP的比率,也不过就是从今天的12%上升到14%。这高于长期平均值,但也还没有高过2021年第二季的水平。

这些利润可能归一个组织所有,也许是 OpenAI。当一个行业的固定成本很高,或者很难转向竞争对手时,垄断的状况经常出现。例如,过往一段时间内,客户没有替代洛克菲勒的石油的选择,也无法自己生产。

生成式人工智能,确实具有一些垄断的特性。

据报导,OpenAI GPT-4 的训练成本超过1亿美元,这是只有少数几家公司,才有本事闭着眼砸钱的大笔投资。此外,还需要有大量关于训练模型数据的专业知识,更不用说,能够抢在早期直接取得用户反馈了。

然而,单一公司垄断整个产业的可能性,却很小。

更可能的是,像航空业、杂货业和搜寻引擎业一样,有少数几家大公司彼此竞争。但没有一种 AI 产品是真正独一无二的,因为所有的产品都使用类似的模型。这使得客户更容易从一个产品转换到另一个产品。驱动这些模型的算力也相当通用。大部分的程式码,以及诀窍和技巧,都可以在线上免费获得,这意味着业余爱好者就可以制造出自己的模型,而且往往能得到惊人的好结果。

观点:生成式AI并没有任何护城河

风险投资公司 Andreessen Horowitz 的一个团队曾经指出:“目前看来,生成式 AI 并没有任何系统性的护城河。”最近从Google泄露出来的资料得出了类似的结论:“进行训练和实验的门槛已经从一个大型研究组织的全部产能,降低到一个人、一个晚上、和一台性能强大的笔记型电脑就能搞定。”
再来谈谈劳动市场。虽然生成式 AI 可能不会产生新的财阀,但对许多人来说,这可能并不足为安慰。他们更关心的是自己的经济前景,特别是他们的工作是否会消失。

恐怖的预测比比皆是。OpenAI 研究学者 Tyna Eloundou 和同事们估计:“大约有 80% 的美国劳动力可能会因为引入 LLM,而有至少 10% 的工作任务受到影响”。普林斯顿大学的 Edward Felten 和同事们进行了类似的研究,发现像是法律服务、会计和旅行社等行业,最有可能面临破坏跟影响。

对照过往的研究,经济学家以前也曾发出过悲观的预测。即使没有普遍性的失业,也会有“空洞化”现象,也就是有意义、待遇好的工作因此消失,取而代之的是一些无意义、薪资低的工作。
然而,实际发生的情况却让人们感到惊讶。

自动化程度越高,失业率反正下降

在过去的十年中,平均的富裕国家失业率大约下降了一半、就业率创下历史新高。自动化和机器人化程度最高的国家,如日本、新加坡和南韩,反而失业率是最低的。在2010年代,美国人的工作满意度提高了。在过去的十年中,最穷困的一群美国人的工资增长速度,比最富有的人还更快。
想像一下,当 AI 自动化超过 50% 的工作任务时,一份工作就会消失;或者是,各行各业任务自动化的比例有多高,就有多少比例的工作者会失业。

在上述任何一种情况下,根据 OpenAI 研究学者 Eloundou 的估算,这将导致美国工作机会减少约 15%。有些人可以转移到人力短缺的行业,比如饭店业。但失业率肯定会大幅上升,可能与2020年新冠病毒疫情最严重时期,美国短期失业率的高峰 15% 差不多。
然而,这种情况不太可能发生:历史显示,工作机会的消失通常会相对缓慢

自动电话交换机系统,这个用来替代人工操作员的机器,在1892年被发明。然而直到1921年,贝尔电话公司才装设了他们的第一个全自动化办公室。即使在这个里程碑之后,美国的电话操作员数量仍然在增长,在20世纪中期,甚至达到了大约35万人的高峰。直到1980年代,这个职业才大规模消失,而这已经是自动化设备发明后的 90 年。
AI 将不需要 90 年,就能横扫劳动力市场。因为大型语言模型 LLM 很容易使用,许多专家对一般大众如何迅速将 ChatGPT 融入他们的生活感到惊讶。但是,这次在工作场所中全面导入新技术的速度,预计也将同样缓慢。

政府监管方面

在最近的一篇文章中,Andreessen Horowitz 的 Mark Andreessen 列出了其中一些原因。他的论点主要集中在政府法令监管方面

在国家高度监管的经济领域里,例如教育和医疗保健等,技术变革往往极其缓慢。一旦缺乏竞争压力,会削弱改进的动力。各国政府可能也有自己的公共政策目标,例如最大化就业水平,这与提高效率是互不相容的。这些行业也更可能会形成工会组织,而工会擅长的正好是,如何防止工作机会的流失。

例子比比皆是。像是英国伦敦公营地铁的火车驾驶员,即使取代他们的自动化技术已经存在了几十年,他们的薪酬还是接近全国中位数的两倍。在 AI 浪潮的中心,美国旧金山,尖峰时段仍然需要靠真人警察来指挥交通。
历史又再重逢, Au revoir!

首先,许多受 AI 威胁的工作机会,都是在受到政府严格监管的行业类别中。
回到普林斯顿大学的 Felten 教授的那篇文章,最易受 AI 影响的前20大职业中有14个是教师,但是只有最勇敢的政府才敢用 AI 取代教师。想像一下,用 AI 取代真人教师的新闻标题会有多惊悚。对于警察和打击犯罪的 AI 也是如此。事实上,义大利已经因为隐私问题,暂时封锁了ChatGPT,据说法国、德国和爱尔兰也正在考虑要加以封锁,这显示出各国政府对于 AI 对工作机会的破坏性,有多么的担忧。
也许,随着时间的推移,政府将允许某些工作被取代。但是这些时间上的刻意拖延,也将为经济活动预留出空间,来做它总是会做的事情:也就是当某些工作被取代时,去额外创造出其他新型态的工作。
再来,新技术可以降低生产成本,但也会创造出对商品和服务的更多需求,或是增加一些难以自动化的工作。
2020年,麻省理工学院的 David Autor 教授和同事发表了一篇论文,得出了一个令人震惊的结论。大约 60% 的美国工作在1940年并不存在。“美甲师”这个工作在2000年才被加到人口普查中,“太阳能电工”则是五年前才出现。AI 经济很可能创造出今天所无法想像的新职业

可能对生产力并没那么大

最后,第三个因素是,既然对劳动市场的影响相对微小,很可能在生产力上的影响也会是小的。
回头看,美国的工厂和家庭开始采用电力是早在19世纪末期。然而,直到第一次世界大战结束后,生产力才出现了爆发。个人电脑是在1970年代发明的,这次生产力的爆发来得更快,但在当时还是感觉很慢。1987年,经济学家 Robert Solow 著名地调侃:电脑时代“无处不在,唯独不在生产力统计数据中, everywhere except for the productivity statistics”,正好反应了这样的现实。
世界仍在等待,最近的 AI 创新,能带来相关的生产力激增。然而,智慧型手机已经被广泛使用了十年,数十亿人可以使用超高速网际网路,许多工作者现在可以根据自己的需要,在办公室和家里之间互相切换。官方调查显示,超过十分之一的美国员工已经在工作中使用某种 AI ;非官方调查的数字,甚至更高。尽管如此,全球的实质生产力增长仍然疲弱。
AI 最终可能会使某些行业的生产力大大提高。史丹福大学的Erik Brynjolfsson 教授和同事们在一篇论文中研究了客服专员的工作。平均而言,拥有 AI 工具的客服人员,每小时解决的问题数量,提高了14%。研究人员自身也可能变得更高效:GPT-X 可能会为他们提供无数的、几乎免费的研究助理。其他人则希望 AI 能消除医疗保健中,行政效率低下的问题,从而降低医疗成本。

但是,许多事情仍然超出了 AI 的范畴。传统的蓝领工作,例如建筑和农业,占了全世界GDP约 20%,这就是一个例子。一个大型语言模型 LLM 对于收割芦笋的人来说,几乎没有什么用处。所以很难想像,在未来几年的时间里,蓝领工作的生产力可以比现在提高多少。这同样适用于传统上需要靠人与人接触,来提供服务的行业,如饭店业和医疗护理。

AI 也无法对失灵的政府规划体系做些什么,而这是正是阻碍生产力增长的最大因素。当城市的规模大小受到限制,房价高昂,人们无法居住在最有效率的地方,安心地生活和工作。无论你的社会可以产有多少出色的新想法,如果你不能及时地建造执行出来,都是无用的。科技跟这些问题的解法本身,八竿子打不着边。

📎参考链接:https://www.economist.com/finance-and-economics/2023/05/07/your-job-is-probably-safe-from-artificial-intelligence

相关文章
|
Linux iOS开发 MacOS
typora下载和破解(仅供学习)
Typora 一款 Markdown 编辑器和阅读器 风格极简 / 多种主题 / 支持 macOS,Windows 及 Linux 实时预览 / 图片与文字 / 代码块 / 数学公式 / 图表 目录大纲 / 文件管理 / 导入与导出 ……
164002 11
typora下载和破解(仅供学习)
|
SQL 存储 自然语言处理
StoreView SQL,让数据分析不受地域限制
日志服务SLS是云原生观测与分析平台,支持Log、Metric、Trace等数据的大规模、低成本实时处理。为解决跨地域数据联合分析问题,SLS推出StoreView功能,可将多地域、多项目的Logstore组合成虚拟Logstore,简化查询分析流程。相比传统ETL方式,StoreView无需同步数据,减少存储成本和延迟,同时支持数据可见性控制、查询式ETL处理及异构数据Schema对齐等功能,提升跨域数据分析效率。通过__project__和__logstore__两个Meta字段,用户还能识别数据来源,实现精细化分析。
276 21
|
12月前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的QPSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的QPSK调制解调系统的硬件实现与仿真效果。系统包含测试平台(testbench)、高斯信道模块、误码率统计模块,支持不同SNR设置,并增加了ILA在线数据采集和VIO在线SNR设置功能。通过硬件测试验证了系统在不同信噪比下的性能,提供了详细的模块原理及Verilog代码示例。开发板使用说明和移植方法也一并给出,确保用户能顺利在不同平台上复现该系统。
447 15
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
414 7
|
安全 JavaScript Java
汉服|高校汉服租赁网站|基于Springboot的高校汉服租赁网站设计与实现(源码+数据库+文档)
汉服|高校汉服租赁网站|基于Springboot的高校汉服租赁网站设计与实现(源码+数据库+文档)
456 0
|
存储 弹性计算 数据处理
阿里云对象存储OSS怎么收费?包年包月和按量付费价格表
阿里云对象存储OSS提供灵活的计费方案,包括存储费、流量费和请求费等。用户可选择按量付费或包年包月模式。标准型存储按量付费为0.09元/GB/月,包年包月则有多种套餐选择,如9元/年40GB和99元/年100GB。OSS流量费仅针对公网出方向,并区分闲忙时段。此外还提供流量包服务。更多详情及特殊需求费用(如数据处理、传输加速等)
|
算法 机器人 数据挖掘
LeetCode题目54:螺旋矩阵【python4种算法实现】
LeetCode题目54:螺旋矩阵【python4种算法实现】
|
数据可视化 应用服务中间件 Linux
Nginx 可视化管理工具与 cpolar 配置:实现远程访问本地服务的优化
Nginx 可视化管理工具与 cpolar 配置:实现远程访问本地服务的优化
Nginx 可视化管理工具与 cpolar 配置:实现远程访问本地服务的优化