对两个flatten函数的探究

简介: 对两个flatten函数的探究

1 问题

对torch.nn.flatten()和torch.flatten()两个函数的理解。


2 方法

对于torch.nn.Flatten():
其默认参数为start_dim = 1 , end_dim = -1,即从第1维(第0维不变)开始到最后一维结束将每个batch拉伸成一维:


当仅设置一个参数时,该参数表示 start_dim 的值,即从该维度开始到最后一个维度结束,将每个batch拉伸成一维,其余维度不变:


当设置两个参数时,两个参数分别表示开始维度和结束维度:


Torch.nn.flatten()函数官方文档:

对于torch.flatten():
torch.flatten()函数默认start_dim = 0 , 其余与torch.nn.flatten()相同。


torch.flatten()函数官方文档:

3 结语

通过对照实验,对两个函数的参数进行比照分析,得出结论。

目录
相关文章
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch基础之激活函数模块中Sigmoid、Tanh、ReLU、LeakyReLU函数讲解(附源码)
PyTorch基础之激活函数模块中Sigmoid、Tanh、ReLU、LeakyReLU函数讲解(附源码)
359 0
|
3月前
|
PyTorch 算法框架/工具
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
本文介绍了PyTorch中的F.softmax()和F.log_softmax()函数的语法、参数和使用示例,解释了它们在进行归一化处理时的作用和区别。
533 1
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
WK
|
4月前
|
机器学习/深度学习 算法
为什么Sigmoid函数比Tanh函数更好
在神经网络中,Sigmoid和Tanh函数各有优劣,选择取决于具体应用场景。Sigmoid函数输出范围为(0,1),适合二分类问题,但存在梯度消失和非零中心化的问题;Tanh函数输出范围为(-1,1),以0为中心,有利于加速收敛,但同样涉及较大的计算复杂度。两者均存在梯度消失风险,但在多数情况下,Tanh梯度问题较轻。随着技术发展,ReLU等新型激活函数因能有效缓解梯度消失并提高计算效率,已成为许多任务的首选。因此,不能简单地说Sigmoid比Tanh更好,需依据任务需求和网络结构进行选择。
WK
184 1
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch深度学习基础之Tensor对象及其应用的讲解及实战(附源码 简单易懂 包括分段 映射 矩阵乘法 随机数等等)
PyTorch深度学习基础之Tensor对象及其应用的讲解及实战(附源码 简单易懂 包括分段 映射 矩阵乘法 随机数等等)
91 1
|
存储 PyTorch 算法框架/工具
聊一聊pytorch中的张量基本方法
聊一聊pytorch中的张量基本方法
145 0
|
机器学习/深度学习 算法框架/工具
5分钟入门GANS:原理解释和keras代码实现
5分钟入门GANS:原理解释和keras代码实现
233 0
5分钟入门GANS:原理解释和keras代码实现
|
机器学习/深度学习 存储 PyTorch
PyTorch学习系列教程:Tensor如何实现自动求导
今天本文继续PyTorch学习系列。虽然前几篇推文阅读效果不是很好(大体可能与本系列推文是新开的一个方向有关),但自己选择的路也要坚持走下去啊! 前篇推文介绍了搭建一个深度学习模型的基本流程,通过若干个Epoch即完成了一个简单的手写数字分类模型,效果还不错。在这一过程中,一个重要的细节便是模型如何学习到最优参数,答案是通过梯度下降法。实际上,梯度下降法是一类优化方法,是深度学习中广泛应用甚至可称得上是深度学习的基石。本篇不打算讲解梯度下降法,而主要来谈一谈Tensor如何实现自动求导,明白这一过程方能进一步理解各种梯度下降法的原理。
345 0
PyTorch学习系列教程:Tensor如何实现自动求导
|
机器学习/深度学习 存储 并行计算
PyTorch学习系列教程:何为Tensor?
本文继续PyTorch学习系列教程,来介绍在深度学习中最为基础也最为关键的数据结构——Tensor。一方面,Tensor之于PyTorch就好比是array之于Numpy或者DataFrame之于Pandas,都是构建了整个框架中最为底层的数据结构;另一方面,Tensor又与普通的数据结构不同,具有一个极为关键的特性——自动求导。今天,本文就来介绍Tensor这一数据结构。
593 0
PyTorch学习系列教程:何为Tensor?
|
机器学习/深度学习 Python
机器学习(六)Sigmoid函数和Softmax函数
机器学习(六)Sigmoid函数和Softmax函数
826 0
机器学习(六)Sigmoid函数和Softmax函数