Python应用专题 | 13:将标签转为onehot形式

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 在做文本分类的时候,常常需要将标签转为one-hot的数值形式,本文主要从代码的角度介绍该操作。

背景

对于给定具体标签,如何将其转为one-hot形式?比如标签集合体育', '娱乐', '家居', '房产', '教育', '时尚', '时政', '游戏', '科技', '财经',对于multiclass任务,如何将训练数据集中的样本的标签转为one-hot形式?

方法1:

    import numpy as np
    label_list = ['体育', '娱乐', '家居', '房产', '教育', '时尚', '时政', '游戏', '科技', '财经']
    label_dict = { l: i for i, l in enumerate(label_list)}

    data_labels = np.array(["娱乐", "体育", "房产", "科技", "财经"])
    data_label_ids = list(map(label_dict.get, data_labels))
    one_hot = np.zeros((data_labels.size, len(label_list)), dtype=np.int8)
    one_hot[np.arange(data_labels.size), data_label_ids] = 1
    print(one_hot)

输出结果如下:

[[0 1 0 0 0 0 0 0 0 0]
 [1 0 0 0 0 0 0 0 0 0]
 [0 0 0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 1 0]
 [0 0 0 0 0 0 0 0 0 1]]

方法2:

使用np.eye

    import numpy as np
    label_list = ['体育', '娱乐', '家居', '房产', '教育', '时尚', '时政', '游戏', '科技', '财经']
    label_dict = { l: i for i, l in enumerate(label_list)}

    data_labels = np.array(["娱乐", "体育", "房产", "科技", "财经"])
    data_label_ids = list(map(label_dict.get, data_labels))

    # 方法2
    one_hot = np.eye(len(label_list), dtype=np.int8)[data_label_ids]
    print(one_hot)

输出结果如下:

[[0 1 0 0 0 0 0 0 0 0]
 [1 0 0 0 0 0 0 0 0 0]
 [0 0 0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 1 0]
 [0 0 0 0 0 0 0 0 0 1]]

方法3:

使用sklearn.preprocessing.LabelBinarizer

    import numpy as np
    label_list = ['体育', '娱乐', '家居', '房产', '教育', '时尚', '时政', '游戏', '科技', '财经']
    label_dict = { l: i for i, l in enumerate(label_list)}

    data_labels = np.array(["娱乐", "体育", "房产", "科技", "财经"])
    data_label_ids = list(map(label_dict.get, data_labels))

    # 方法3:
    import sklearn.preprocessing
    label_binarizer = sklearn.preprocessing.LabelBinarizer()
    label_binarizer.fit(range(len(label_list)))
    one_hot = label_binarizer.transform(data_label_ids)
    print(one_hot)
相关文章
|
18天前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
184 102
|
3月前
|
机器学习/深度学习 数据采集 算法
Python AutoML框架选型攻略:7个工具性能对比与应用指南
本文系统介绍了主流Python AutoML库的技术特点与适用场景,涵盖AutoGluon、PyCaret、TPOT、Auto-sklearn、H2O AutoML及AutoKeras等工具,帮助开发者根据项目需求高效选择自动化机器学习方案。
280 1
|
2月前
|
存储 数据可视化 BI
Python可视化应用——学生成绩分布柱状图展示
本程序使用Python读取Excel中的学生成绩数据,统计各分数段人数,并通过Matplotlib库绘制柱状图展示成绩分布。同时计算最高分、最低分及平均分,实现成绩可视化分析。
133 0
|
5月前
|
机器学习/深度学习 数据可视化 算法
Python数值方法在工程和科学问题解决中的应用
本文探讨了Python数值方法在工程和科学领域的广泛应用。首先介绍了数值计算的基本概念及Python的优势,如易学易用、丰富的库支持和跨平台性。接着分析了Python在有限元分析、信号处理、优化问题求解和控制系统设计等工程问题中的应用,以及在数据分析、机器学习、模拟建模和深度学习等科学问题中的实践。通过具体案例,展示了Python解决实际问题的能力,最后总结展望了Python在未来工程和科学研究中的发展潜力。
102 0
|
23天前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
102 0
|
25天前
|
中间件 机器人 API
Python多态实战:从基础到高阶的“魔法”应用指南
Python多态机制通过“鸭子类型”实现灵活接口,使不同对象统一调用同一方法,自动执行各自行为。它简化代码逻辑、提升扩展性,适用于数据处理、策略切换、接口适配等场景。掌握多态思维,能有效减少冗余判断,使程序更优雅、易维护。
79 0
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
53 1
|
1月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
73 0
|
2月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍如何利用Python的clipboard-monitor库实现剪贴板监控系统,涵盖文本与图片的实时监听、防重复存储、GUI界面开发及数据加密等核心技术,适用于安全审计与自动化办公场景。
71 0
|
2月前
|
数据采集 API 调度
Python爬虫框架对比:Scrapy vs Requests在API调用中的应用
本文对比了 Python 中 Scrapy 与 Requests 两大爬虫框架在 API 调用中的差异,涵盖架构设计、调用模式、性能优化及适用场景,并提供实战建议,助力开发者根据项目需求选择合适工具。

推荐镜像

更多