sm2国密算法的纯c语言版本,使用于单片机平台(静态内存分配)

简介: sm2国密算法的纯c语言版本,使用于单片机平台(静态内存分配)

终于搞定了sm2算法在smt32单片机上的移植。源码可联系我索取。


之前的动态内存分配,在上面总是莫名其妙的崩。不知道堆和栈空间该改多大合适。且总共64K的内存,太受限了。


几次想放弃,最后还是坚持了一下,终于搞定啦!


看miracl库官方说明文档,是使用了内存吃紧的设备的。可以使用静态内存分配。但是文档上介绍的太简单了,一笔带过。


还得自己调试这摸索。


文档中描述:


受限环境


在版本5的中,有一个对在非常小和受限的环境中的MIRACL实现的新支持。使用config实用程序,它现在支持各种时空交换(time/space trade-offs),最主要的革新是在一个不支持堆的环境中生成和使用MIRACL。通常big变量的空间从堆中分配,但通过在配置头文件中指定MR_STATIC,可以生成一个总是尝试从静态内存或栈,而不是堆中分配内存的版本。


这带来的主要负面影响是big变量的最大尺寸必须在编译时确定(生成库的时候)。如往常一样,在这个过程中最好让config实用程序引导你创建一个合适的配置头文件mirdef.h。


对于C程序员,使用下列方式从栈中为big变量分配内存:


big x, y, z;
char mem[MR_BIG_RESERVE(3)];
memset(mem, 0, MR_BIG_RESERVE(3));


为三个big变量分配的空间都在栈上并且被清零,然后每个变量应如下初始化:


x = mirvar_mem(mem, 0);
y = mirvar_mem(mem, 1);
z = mirvar_mem(mem, 2);


从单个内存块中为多个big变量分配所有空间是有意义的,那样可以更快的初始化,而且可以对变量对齐进行完整的控制——编译器有时会出错。请注意big初始化函数mirvar在这种模式中不再有效,分配操作应像上面描述的那样实现。


最后,可以选择性地在函数末尾调用memset来在离开前清空内存块——出于保密原因,这可能很重要。请参考示例程序brent.c。


这种机制在实现一个使用椭圆曲线的非常小的程序时可能非常有用。椭圆曲线要求的big数字要比其它加密技术的小得多。从栈中为椭圆曲线的点分配内存:


epoint *x, *y, *z;
char mem[MR_ECP_RESERVE(3)];
memset(mem, 0, MR_ECP_RESERVE(3));


初始化这些点:


x = epoint_init_mem(mem, 0);
y = epoint_init_mem(mem, 1);
z = epoint_init_mem(mem, 2);


同样,在离开函数前清空相关内存是明智的。



总结几点注意事项吧,


#define MR_STATIC 20,


这个值,不能低于20,太大也不行


然后,注意把sm2中,使用动态内存分配的地方都替换掉。


原来的释放内存的,也不需要了。可以注释掉。


//  mirkill(y);
  //  epoint_free(g);
  //  epoint_free(w);

如:


p = mirvar(0);


换成:


char mem[MR_BIG_RESERVE(10)];
memset(mem, 0, MR_BIG_RESERVE(10));
 //p=mirvar(0);
 p = mirvar_mem(mem, 0);
 a=mirvar_mem(mem, 1);
//=============================
  //g=epoint_init();
 //w=epoint_init();


这两个,换成如下的写法:


char mem1[MR_ECP_RESERVE(2)]; 
 memset(mem1 ,0, MR_ECP_RESERVE(2));
 g = epoint_init_mem(mem1,0);
 w = epoint_init_mem(mem1,1);


调用rand(time(NULL))的地方,


在单片机环境下,调用time会出现莫名其妙的错误,反正是取随机数种子的嘛,干掉time()函数。


可用静态变量,每次加1来作为种子。


在单片机环境中,还有一点需要注意的是:


单片机的内存和栈空间都不大。尤其是栈空间,如果函数中定义的局部变量太多的话,会导致应用崩溃。


如果是多任务环境里,应用里得调大点儿单个任务的堆栈空间。


或者把一些函数里面使用的局部变量,定义为外部全局变量吧,大的变量数组不要在函数内部占用栈空间了,栈空间紧张。


或者声明为static也可以。


国密算法介绍:


随着金融安全上升到国家安全高度,近年来国家有关机关和监管机构站在国家安全和长远战略的高度提出了推动国密算法应用实施、加强行业安全可控的要求。摆脱对国外技术和产品的过度依赖,建设行业网络安全环境,增强我国行业信息系统的“安全可控”能力显得尤为必要和迫切。


密码算法是保障信息安全的核心技术,尤其是最关键的银行业核心领域长期以来都是沿用3DES、SHA-1、RSA等国际通用的密码算法体系及相关标准,为从根本上摆脱对国外密码技术和产品的过度依赖。2010年底,国家密码管理局公布了我国自主研制的“椭圆曲线公钥密码算法”(SM2算法)。为保障重要经济系统密码应用安全,国家密码管理局于2011年发布了《关于做好公钥密码算法升级工作的通知》,要求“自2011年3月1日期,在建和拟建公钥密码基础设施电子认证系统和密钥管理系统应使用SM2算法。自2011年7月1日起,投入运行并使用公钥密码的信息系统,应使用SM2算法。


国产密码算法(国密算法)是指国家密码局认定的国产商用密码算法,在金融领域目前主要使用公开的SM2、SM3、SM4三类算法,分别是非对称算法、哈希算法和对称算法。


SM2算法:SM2椭圆曲线公钥密码算法是我国自主设计的公钥密码算法,包括SM2-1椭圆曲线数字签名算法,SM2-2椭圆曲线密钥交换协议,SM2-3椭圆曲线公钥加密算法,分别用于实现数字签名密钥协商和数据加密等功能。SM2算法与RSA算法不同的是,SM2算法是基于椭圆曲线上点群离散对数难题,相对于RSA算法,256位的SM2密码强度已经比2048位的RSA密码强度要高。


SM3算法:SM3杂凑算法是我国自主设计的密码杂凑算法,适用于商用密码应用中的数字签名和验证消息认证码的生成与验证以及随机数的生成,可满足多种密码应用的安全需求。为了保证杂凑算法的安全性,其产生的杂凑值的长度不应太短,例如MD5输出128比特杂凑值,输出长度太短,影响其安全性SHA-1算法的输出长度为160比特,SM3算法的输出长度为256比特,因此SM3算法的安全性要高于MD5算法和SHA-1算法。


SM4算法:SM4分组密码算法是我国自主设计的分组对称密码算法,用于实现数据的加密/解密运算,以保证数据和信息的机密性。要保证一个对称密码算法的安全性的基本条件是其具备足够的密钥长度,SM4算法与AES算法具有相同的密钥长度分组长度128比特,因此在安全性上高于3DES算法。


SM2算法单片机平台下的实现:


#include <stdio.h>
#include <stdlib.h>
#include<string.h>
//#include <memory.h>
#include <time.h>
#include "sm2.h"
#include "tmsm2.h"
#define SM2_PAD_ZERO TRUE
//#define SM2_PAD_ZERO FALSE
#define SM2_DEBUG   0
/*
#define QBITS 256
#define PBITS 3072
#define MAX_ECC_KEY_LEN   256
#define MAX_ECC_KEY_SIZE  (MAX_ECC_KEY_LEN/8)
*/
struct FPECC{
char *p;
char *a;
char *b;
char *n;
char *x;
char *y;
};
void PrintBuf(unsigned char *buf, int buflen)
{
  int i;
  printf("\n");
  printf("len = %d\n", buflen);
  for(i=0; i<buflen; i++) {
    if (i % 32 != 31)
      printf("%02x", buf[i]);
      else
      printf("%02x\n", buf[i]);
  }
  printf("\n");
  return;
}
void Printch(unsigned char *buf, int  buflen)
{
  int i;
  for (i = 0; i < buflen; i++) {
    if (i % 32 != 31)
      printf("%c", buf[i]);
    else
      printf("%c\n", buf[i]);
  }
  printf("\n");
  //return 0;
}
#if SM2_DEBUG
void PrintBig(big data)
{
 int len=0;
 unsigned char buf[10240];
 len=big_to_bytes(0,data,(char *)buf,0);
 PrintBuf(buf,len);
}
unsigned char radom[]  = {0x6C,0xB2,0x8D,0x99,0x38,0x5C,0x17,0x5C,0x94,0xF9,0x4E,0x93,0x48,0x17,0x66,0x3F,0xC1,0x76,0xD9,0x25,0xDD,0x72,0xB7,0x27,0x26,0x0D,0xBA,0xAE,0x1F,0xB2,0xF9,0x6F};
unsigned char radom1[] = {0x4C,0x62,0xEE,0xFD,0x6E,0xCF,0xC2,0xB9,0x5B,0x92,0xFD,0x6C,0x3D,0x95,0x75,0x14,0x8A,0xFA,0x17,0x42,0x55,0x46,0xD4,0x90,0x18,0xE5,0x38,0x8D,0x49,0xDD,0x7B,0x4F};
unsigned char randkey[] = {0x83,0xA2,0xC9,0xC8,0xB9,0x6E,0x5A,0xF7,0x0B,0xD4,0x80,0xB4,0x72,0x40,0x9A,0x9A,0x32,0x72,0x57,0xF1,0xEB,0xB7,0x3F,0x5B,0x07,0x33,0x54,0xB2,0x48,0x66,0x85,0x63};
unsigned char randkeyb[]= {0x33,0xFE,0x21,0x94,0x03,0x42,0x16,0x1C,0x55,0x61,0x9C,0x4A,0x0C,0x06,0x02,0x93,0xD5,0x43,0xC8,0x0A,0xF1,0x97,0x48,0xCE,0x17,0x6D,0x83,0x47,0x7D,0xE7,0x1C,0x80};
struct FPECC Ecc256={
"8542D69E4C044F18E8B92435BF6FF7DE457283915C45517D722EDB8B08F1DFC3",
"787968B4FA32C3FD2417842E73BBFEFF2F3C848B6831D7E0EC65228B3937E498",
"63E4C6D3B23B0C849CF84241484BFE48F61D59A5B16BA06E6E12D1DA27C5249A",
"8542D69E4C044F18E8B92435BF6FF7DD297720630485628D5AE74EE7C32E79B7",
"421DEBD61B62EAB6746434EBC3CC315E32220B3BADD50BDC4C4E6C147FEDD43D",
"0680512BCBB42C07D47349D2153B70C4E5D7FDFCBFA36EA1A85841B9E46E09A2",
};
unsigned char sm2_par_dig[128] = {
0x78,0x79,0x68,0xB4,0xFA,0x32,0xC3,0xFD,0x24,0x17,0x84,0x2E,0x73,0xBB,0xFE,0xFF,
0x2F,0x3C,0x84,0x8B,0x68,0x31,0xD7,0xE0,0xEC,0x65,0x22,0x8B,0x39,0x37,0xE4,0x98,
0x63,0xE4,0xC6,0xD3,0xB2,0x3B,0x0C,0x84,0x9C,0xF8,0x42,0x41,0x48,0x4B,0xFE,0x48,
0xF6,0x1D,0x59,0xA5,0xB1,0x6B,0xA0,0x6E,0x6E,0x12,0xD1,0xDA,0x27,0xC5,0x24,0x9A,
0x42,0x1D,0xEB,0xD6,0x1B,0x62,0xEA,0xB6,0x74,0x64,0x34,0xEB,0xC3,0xCC,0x31,0x5E,
0x32,0x22,0x0B,0x3B,0xAD,0xD5,0x0B,0xDC,0x4C,0x4E,0x6C,0x14,0x7F,0xED,0xD4,0x3D,
0x06,0x80,0x51,0x2B,0xCB,0xB4,0x2C,0x07,0xD4,0x73,0x49,0xD2,0x15,0x3B,0x70,0xC4,
0xE5,0xD7,0xFD,0xFC,0xBF,0xA3,0x6E,0xA1,0xA8,0x58,0x41,0xB9,0xE4,0x6E,0x09,0xA2,
};
#else
/*SM2*/
struct FPECC Ecc256={
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF",
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC",
"28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93",
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123",
"32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7",
"BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0",
};
unsigned char sm2_par_dig[128] = {
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFC,
0x28,0xE9,0xFA,0x9E,0x9D,0x9F,0x5E,0x34,0x4D,0x5A,0x9E,0x4B,0xCF,0x65,0x09,0xA7,
0xF3,0x97,0x89,0xF5,0x15,0xAB,0x8F,0x92,0xDD,0xBC,0xBD,0x41,0x4D,0x94,0x0E,0x93,
0x32,0xC4,0xAE,0x2C,0x1F,0x19,0x81,0x19,0x5F,0x99,0x04,0x46,0x6A,0x39,0xC9,0x94,
0x8F,0xE3,0x0B,0xBF,0xF2,0x66,0x0B,0xE1,0x71,0x5A,0x45,0x89,0x33,0x4C,0x74,0xC7,
0xBC,0x37,0x36,0xA2,0xF4,0xF6,0x77,0x9C,0x59,0xBD,0xCE,0xE3,0x6B,0x69,0x21,0x53,
0xD0,0xA9,0x87,0x7C,0xC6,0x2A,0x47,0x40,0x02,0xDF,0x32,0xE5,0x21,0x39,0xF0,0xA0,
};
unsigned char enkey[32] = {
0xB1,0x6B,0xA0,0xDA,0x27,0xC5,0x24,0x9A,0xF6,0x1D,0x6E,0x6E,0x12,0xD1,0x59,0xA5,
0xB6,0x74,0x64,0x34,0xEB,0xD6,0x1B,0x62,0xEA,0xEB,0xC3,0xCC,0x31,0x5E,0x42,0x1D,
};
#endif
#define SEED_CONST 0x1BD8C95A
int sm3_e(unsigned char *userid, int userid_len, unsigned char *xa, int xa_len, unsigned char *ya, int ya_len, unsigned char *msg, int msg_len, unsigned char *e)
{
/*
功能:根据用户ID及公钥,求用于签名或验签的消息HASH值
[输入] userid: 用户ID
[输入] userid_len: userid的字节数
[输入] xa: 公钥的X坐标
[输入] xa_len: xa的字节数
[输入] ya: 公钥的Y坐标
[输入] ya_len: ya的字节数
[输入] msg:要签名的消息
[输入] msg_len: msg的字节数
[输出] e:32字节,用于签名或验签
返回值:
    -1:内存不足
      0:成功
*/
  return 0;
}
void sm2_keygen(unsigned char *wx, int *wxlen, unsigned char *wy, int *wylen,unsigned char *privkey, int *privkeylen)
{
}
int kdf(unsigned char *zl, unsigned char *zr, int klen, unsigned char *kbuf)
{
}
int sm2_encrypt(unsigned char *msg,int msglen, unsigned char *wx,int wxlen, unsigned char *wy,int wylen, unsigned char *outmsg)
{
}
int sm2_decrypt(unsigned char *msg,int msglen, unsigned char *privkey, int privkeylen, unsigned char *outmsg)
{
}
int sm2_key_get_y(unsigned char *wx,int wxlen, unsigned char *wy,int wylen,int cb)
{
  /*
  功能:验证SM2签名
  [输入] wx:   公钥的X坐标
  [输入] wxlen: wx的字节数,不超过32字节
  [输入] wy:   公钥的Y坐标
  [输入] wylen: wy的字节数,不超过32字节
  返回值:
   -1:验证失败
    0:验证通过
  */
}
int sm2_verify_tm(unsigned char *hash,int hashlen,unsigned char  *cr,int rlen,unsigned char *cs,int slen, unsigned char *wx,int wxlen, unsigned char *wy,int wylen)
{
/*
功能:验证SM2签名
[输入] hash:    sm3_e()的结果
[输入] hashlen: hash的字节数,应为32
[输入] cr:  签名结果的第一部分
[输入] rlen:cr的字节数
[输入] cs:  签名结果的第二部分。
[输入] slen:cs的字节数
[输入] wx:   公钥的X坐标
[输入] wxlen: wx的字节数,不超过32字节
[输入] wy:   公钥的Y坐标
[输入] wylen: wy的字节数,不超过32字节
返回值:
     -1:验证失败
    0:验证通过
*/
}
/*
int main()
{
  printf("sm2 test....\n");
  unsigned char dB[] = { 0x16,0x49,0xAB,0x77,0xA0,0x06,0x37,0xBD,0x5E,0x2E,0xFE,0x28,0x3F,0xBF,0x35,0x35,0x34,0xAA,0x7F,0x7C,0xB8,0x94,0x63,0xF2,0x08,0xDD,0xBC,0x29,0x20,0xBB,0x0D,0xA0 };
  unsigned char xB[] = { 0x43,0x5B,0x39,0xCC,0xA8,0xF3,0xB5,0x08,0xC1,0x48,0x8A,0xFC,0x67,0xBE,0x49,0x1A,0x0F,0x7B,0xA0,0x7E,0x58,0x1A,0x0E,0x48,0x49,0xA5,0xCF,0x70,0x62,0x8A,0x7E,0x0A };
  unsigned char yB[] = { 0x75,0xDD,0xBA,0x78,0xF1,0x5F,0xEE,0xCB,0x4C,0x78,0x95,0xE2,0xC1,0xCD,0xF5,0xFE,0x01,0xDE,0xBB,0x2C,0xDB,0xAD,0xF4,0x53,0x99,0xCC,0xF7,0x7B,0xBA,0x07,0x6A,0x42 };
  unsigned char tx[256];
  unsigned char etx[256];
  unsigned char mtx[256];
  FILE *fp=0;
  int wxlen, wylen, privkeylen,len;
  //fopen(&fp, "5.txt", "r");
  //len=fread_s(tx, 256,sizeof(unsigned char), 256, fp);
  fp = fopen("5.txt","r");
  len=fread(tx,1,256,fp);
  tx[len] = 0;
  sm2_keygen(xB, &wxlen, yB, &wylen, dB, &privkeylen);
  printf("dB: ");
  PrintBuf(dB, 32);
  printf("xB: ");
  PrintBuf(xB, 32);
  printf("yB: ");
  PrintBuf(yB, 32);
  sm2_encrypt(tx,len,xB,32,yB,32,etx);
  printf("\n``````````````````this is encrypt```````````````````\n");
  PrintBuf(etx, 64 +len + 32);
  printf("\n``````````````````this is decrypt```````````````````\n");
  sm2_decrypt(etx,64+len+32,dB,32,mtx);
  if(sm2_decrypt(etx,64+len+32,dB,32,mtx) < 0)
    printf("sm2_decrypt error!\n");
  else
  {
    PrintBuf(mtx, len);
    Printch(mtx, len);
  }
  printf("\n``````````````````this is end```````````````````````\n");
  return 0;
}
*/
int sm2_test()
{
  printf("sm2 test....\n");
  unsigned char dB[] = { 0x16,0x49,0xAB,0x77,0xA0,0x06,0x37,0xBD,0x5E,0x2E,0xFE,0x28,0x3F,0xBF,0x35,0x35,0x34,0xAA,0x7F,0x7C,0xB8,0x94,0x63,0xF2,0x08,0xDD,0xBC,0x29,0x20,0xBB,0x0D,0xA0 };
  unsigned char xB[] = { 0x43,0x5B,0x39,0xCC,0xA8,0xF3,0xB5,0x08,0xC1,0x48,0x8A,0xFC,0x67,0xBE,0x49,0x1A,0x0F,0x7B,0xA0,0x7E,0x58,0x1A,0x0E,0x48,0x49,0xA5,0xCF,0x70,0x62,0x8A,0x7E,0x0A };
  unsigned char yB[] = { 0x75,0xDD,0xBA,0x78,0xF1,0x5F,0xEE,0xCB,0x4C,0x78,0x95,0xE2,0xC1,0xCD,0xF5,0xFE,0x01,0xDE,0xBB,0x2C,0xDB,0xAD,0xF4,0x53,0x99,0xCC,0xF7,0x7B,0xBA,0x07,0x6A,0x42 };
  unsigned char tx[257];
  unsigned char etx[256];
  unsigned char mtx[256];
  //FILE *fp=0;
  int wxlen, wylen, privkeylen,len;
  //fopen(&fp, "5.txt", "r");
  //len=fread_s(tx, 256,sizeof(unsigned char), 256, fp);
  //fp = fopen("5.txt","r");
  //len=fread(tx,1,256,fp);
    tx[0] = 0x31;
    tx[1] = 0x31;
    tx[2] = 0x31;
    tx[3] = 0x31;
    len = 256;
  tx[len] = 0;
  sm2_keygen(xB, &wxlen, yB, &wylen, dB, &privkeylen);
  printf("dB: ");
  PrintBuf(dB, 32);
  printf("xB: ");
  PrintBuf(xB, 32);
  printf("yB: ");
  PrintBuf(yB, 32);
  sm2_encrypt(tx,len,xB,32,yB,32,etx);
  printf("\n``````````````````this is encrypt```````````````````\n");
  PrintBuf(etx, 64 +len + 32);
  printf("\n``````````````````this is decrypt```````````````````\n");
  sm2_decrypt(etx,64+len+32,dB,32,mtx);
  if(sm2_decrypt(etx,64+len+32,dB,32,mtx) < 0)
    printf("sm2_decrypt error!\n");
  else
  {
    PrintBuf(mtx, len);
    Printch(mtx, len);
  }
  printf("\n``````````````````this is end```````````````````````\n");
  unsigned char ca_publickey[] ={0x4a,0xb4,0x60,0x23,0xee,0x81,0x43,0xd0,0x89,0x0f,0x5b,0xe5,0x88,0x22,0x5e,0x17,0xcd,0x7e,0x19,0x88,0x64,0x74,0xa2,0x4a,0xa4,0xc3,0x3f,0x35,0x9c,0xb7,0xdb,0xe4,0x83,0xb4,0x72,0x95,0x48,0x4e,0x8d,0x3b,0xef,0x03,0x45,0x09,0x8b,0xd5,0x61,0x96,0xd4,0x75,0x0d,0xd4,0x40,0xf0,0x4d,0xbe,0x81,0xa0,0x9d,0x06,0x5c,0xa1,0x59,0xae};
  unsigned char ca_sign[]={0x5f,0xda,0x05,0x59,0x52,0xfe,0xdc,0xcf,0xd0,0x6d,0x46,0xad,0xe4,0xf2,0xbd,0x85,0x59,0x8c,0x12,0xba,0x7c,0xda,0x6c,0xbb,0xa9,0x5d,0x17,0xb9,0x4f,0xa1,0x72,0xdf,0x1f,0x54,0xef,0x50,0x04,0xe9,0x76,0xb4,0x34,0xb4,0x7f,0xf1,0x08,0xcc,0x91,0x22,0x0d,0xcb,0x9f,0x75,0x5c,0xbb,0xf5,0x87,0xa1,0x35,0x18,0xdf,0xc0,0x71,0xa9,0x6e};
  unsigned char ca_source[]={0x12,0x00,0x00,0x00,0x00,0x12,0x99,0x00,0x00,0x00,0x04,0x04,0x00,0x33,0x03,0xa0,0x80,0x98,0x56,0xe4,0xfd,0xd3,0x6d,0xba,0x5d,0x38,0x06,0x14,0xe0,0x69,0x84,0x48,0xfa,0x40,0x4d,0xc4,0x9e,0x2d,0xf3,0x70,0xb9,0x65,0x74,0xff,0xaf,0x39,0x0d};
  int ret = mt_sm2_verify(ca_publickey,sizeof(ca_publickey),ca_sign,sizeof(ca_sign),ca_source,sizeof(ca_source));
  if(ret == 1){
      printf("\n``````````````````this is success```````````````````````\n");
  }else
  { 
      printf("\n``````````````````this is failed```````````````````````\n");
  }
  unsigned char ca_publickey1[] ={0x46,0xd2,0x68,0x06,0xfa,0xda,0x1d,0xc0,0x0a,0xb8,0xca,0x28,0x48,0x85,0x37,0x05,0x26,0x11,0x59,0xca,0xf5,0x5c,0xe8,0xc5,0x12,0x5b,0xc1,0x71,0x77,0x05,0x39,0x2a,0xca,0xd4,0xd4,0x65,0x84,0x09,0x97,0xdc,0xde,0xc2,0x58,0x02,0x5a,0xa2,0x71,0xfe,0xec,0xf4,0xda,0x60,0xf8,0x6a,0xc2,0x3d,0x96,0x20,0xe9,0x13,0x82,0x9f,0x0e,0x4c};
  unsigned char ca_sign1[]={0xbe,0x00,0x1b,0x1b,0xf6,0x0e,0x9e,0x02,0x1e,0xba,0x5e,0x7d,0xf5,0xa5,0x2f,0x43,0xe1,0x4f,0xce,0x66,0xd9,0xb2,0x55,0xa4,0x95,0x48,0xef,0xfb,0x3c,0x2e,0x18,0xca,0x42,0xd7,0xf2,0x0b,0xb4,0xb8,0x87,0xfb,0xb0,0x44,0x67,0x3b,0x50,0x3a,0x58,0xdc,0x1f,0x85,0x99,0x04,0x9d,0x51,0xe0,0xfc,0x99,0x5e,0x40,0x55,0xbe,0x58,0x15,0x6a};
  unsigned char ca_source1[]={0x12,0x03,0x60,0x42,0x70,0x01,0x31,0x14,0x45,0x01,0x04,0x04,0x00,0x21,0x02,0xe1,0xcb,0x8e,0xae,0x77,0xa1,0xb5,0x88,0xca,0xb9,0x1e,0x02,0x20,0xfd,0xa2,0x0b,0x30,0x95,0x9f,0xc9,0x30,0xc9,0x67,0xd1,0xba,0x10,0x61,0x41,0xf4,0x29,0xf2,0xb6};
  ret = tm_sm2_verify(ca_publickey1,sizeof(ca_publickey1),ca_sign1,sizeof(ca_sign1),ca_source1,sizeof(ca_source1));
  if(ret == 1){
      printf("\n``````````````````this is success```````````````````````\n");
  }else
  { 
      printf("\n``````````````````this is failed```````````````````````\n");
  }
  return 0;
}


#include "tmsm2.h"
#include "sm2.h"
#include <string.h>
/*
功能:使用压缩钥匙XSM2验签
pubkeyx:压缩公钥X,17字节,0x02/0x03开头
pubkeylen:缩公钥X长度
sign:签名字符串
signlen:签名字符串长
data:数据字符串
datalen:数据字符串长度
*/
int tm_sm2_verify_compress(
        unsigned char* pubkeyX, int pubkeylen, unsigned char* sign, int signlen, unsigned char* data, int datalen) {
    //参数校验
    if (pubkeyX == NULL || pubkeylen < 0 || sign == NULL || signlen <= 0 || data == NULL || datalen <= 0) {
        return SM2_ERROR_PARAM;
    }
    int bc = -1;
    unsigned char pubkeyY[32], he[32];
    //签名数据长度
    if (signlen != 64)
        return SM2_ERROR_SIGNLEN;
    //公钥X长度
    if (pubkeylen != 33)
        return SM2_ERROR_PUBLICLEN;
    //公钥X压缩码
    switch (pubkeyX[0]) {
        case 0x02:
            bc = 0;
            break;
        case 0x03:
            bc = 1;
            break;
        default:
            return SM2_ERROR_COMPRESSCODE;
    }
    //获取公钥Y
    if (sm2_key_get_y(&pubkeyX[1], 32, pubkeyY, 32, bc) < 0) {
        return SM2_ERROR_GETPUBLICY;
    }
    //计算sm3 hash
    char userid[] = "1234567812345678";
    if (sm3_e((unsigned char *)userid, strlen(userid), &pubkeyX[1], 32, pubkeyY, 32, data, datalen, he) < 0) {
        return SM2_ERROR_SM3HASH;
    }
    // SM2验签
    if (sm2_verify_tm(he, 32, &sign[0], 32, &sign[32], 32, &pubkeyX[1], 32, pubkeyY, 32) < 0) {
        return SM2_ERROR_VERIFY;
    }
    return SM2_OK;
}
/*
功能:非压缩方式SM验签
pubkeyx:压缩公钥X,17字节,0x02/0x03开头
pubkeylen:缩公钥X长度
sign:签名字符串
signlen:签名字符串长
data:数据字符串
datalen:数据字符串长度
*/
int tm_sm2_verify(void* pubkey, int pubkeylen, void* sign, int signlen, void* data, int datalen) {
    //参数校验
    if (pubkey == NULL || pubkeylen <= 0 || sign == NULL || signlen <= 0 || data == NULL || datalen <= 0) {
        return MT_SM2_ERROR_PARAM;
    }
    unsigned char* pubk = (unsigned char*)pubkey;
    unsigned char* signdata = (unsigned char*)sign;
    unsigned char* data_c = (unsigned char*)data;
    unsigned char he[32];
    //签名数据长度
    if (signlen != 64)
        return SM2_ERROR_SIGNLEN;
    //公钥X长度
    if (pubkeylen != 64)
        return SM2_ERROR_PUBLICLEN;
    //计算sm3 hash
    char tmp[] = "1234567812345678";
    if (sm3_e((unsigned char *)tmp, strlen(tmp), &pubk[0], 32, &pubk[32], 32, data_c, datalen, he) < 0) {
        return SM2_ERROR_SM3HASH;
    }
    // SM2验签
  int sm2_res = sm2_verify_tm(he, 32, &signdata[0], 32, &signdata[32], 32, &pubk[0], 32, &pubk[32], 32);
    if (sm2_res < 0) {
        return SM2_ERROR_VERIFY;
    }
    return SM2_OK;
}


相关文章
|
2月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
39 3
|
28天前
|
存储 安全 数据管理
C语言之考勤模拟系统平台(千行代码)
C语言之考勤模拟系统平台(千行代码)
48 4
|
17天前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
30 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
17天前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
47 6
|
21天前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
40 6
|
28天前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
100 13
|
22天前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
28天前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
57 11
|
22天前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
28天前
|
存储 C语言 开发者
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
52 11