【深度学习工具】Python代码查看GPU资源使用情况

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在训练神经网络模型时候,有时候我们想查看GPU资源的使用情况,如果使用Ctrl+Shift+Esc不太符合我们程序员的风格😅,如果可以使用代码查看GPU使用情况就比较Nice。话不多说,直接上代码。

 在训练神经网络模型时候,有时候我们想查看GPU资源的使用情况,如果使用Ctrl+Shift+Esc不太符合我们程序员的风格😅,如果可以使用代码查看GPU使用情况就比较Nice

话不多说,直接上代码

import torch.cuda
from pynvml import *
def show_gpu(simlpe=True):
    # 初始化
    nvmlInit()
    # 获取GPU个数
    deviceCount = nvmlDeviceGetCount()
    total_memory = 0
    total_free = 0
    total_used = 0
    gpu_name = ""
    gpu_num = deviceCount
    for i in range(deviceCount):
        handle = nvmlDeviceGetHandleByIndex(i)
        info = nvmlDeviceGetMemoryInfo(handle)
        gpu_name = nvmlDeviceGetName(handle).decode('utf-8')
        # 查看型号、显存、温度、电源
        if not simlpe:
            print("[ GPU{}: {}".format(i, gpu_name), end="    ")
            print("总共显存: {}G".format((info.total//1048576)/1024), end="    ")
            print("空余显存: {}G".format((info.free//1048576)/1024), end="    ")
            print("已用显存: {}G".format((info.used//1048576)/1024), end="    ")
            print("显存占用率: {}%".format(info.used/info.total), end="    ")
            print("运行温度: {}摄氏度 ]".format(nvmlDeviceGetTemperature(handle,0)))
        total_memory += (info.total//1048576)/1024
        total_free += (info.free//1048576)/1024
        total_used += (info.used//1048576)/1024
    print("显卡名称:[{}],显卡数量:[{}],总共显存;[{}G],空余显存:[{}G],已用显存:[{}G],显存占用率:[{}%]。".format(gpu_name, gpu_num, total_memory, total_free, total_used, (total_used/total_memory)))
    #关闭管理工具
    nvmlShutdown()
def use_gpu(used_percentage=0.75):
    '''
    不使用显存占用率高于used_percentage的gpu
    :param used_percentage:
    :return:
    '''
    nvmlInit()
    gpu_num = nvmlDeviceGetCount()
    out = ""
    for i in range(gpu_num):
        handle = nvmlDeviceGetHandleByIndex(i)
        info = nvmlDeviceGetMemoryInfo(handle)
        used_percentage_real = info.used / info.total
        if out == "":
            if used_percentage_real < used_percentage:
                out += str(i)
        else:
            if used_percentage_real < used_percentage:
                out += "," + str(i)
    nvmlShutdown()
    return out
show_gpu(False)
os.environ["CUDA_VISIBLE_DEVICES"] = use_gpu(0.5)  # 选择使用训练的GPU

image.gif

实现效果

image.gif编辑

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
25
分享
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
117 6
|
2月前
|
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
92 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
92 33
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
114 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
273 6
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
90 40
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。