【深度学习工具】Python代码查看GPU资源使用情况

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 在训练神经网络模型时候,有时候我们想查看GPU资源的使用情况,如果使用Ctrl+Shift+Esc不太符合我们程序员的风格😅,如果可以使用代码查看GPU使用情况就比较Nice。话不多说,直接上代码。

 在训练神经网络模型时候,有时候我们想查看GPU资源的使用情况,如果使用Ctrl+Shift+Esc不太符合我们程序员的风格😅,如果可以使用代码查看GPU使用情况就比较Nice

话不多说,直接上代码

import torch.cuda
from pynvml import *
def show_gpu(simlpe=True):
    # 初始化
    nvmlInit()
    # 获取GPU个数
    deviceCount = nvmlDeviceGetCount()
    total_memory = 0
    total_free = 0
    total_used = 0
    gpu_name = ""
    gpu_num = deviceCount
    for i in range(deviceCount):
        handle = nvmlDeviceGetHandleByIndex(i)
        info = nvmlDeviceGetMemoryInfo(handle)
        gpu_name = nvmlDeviceGetName(handle).decode('utf-8')
        # 查看型号、显存、温度、电源
        if not simlpe:
            print("[ GPU{}: {}".format(i, gpu_name), end="    ")
            print("总共显存: {}G".format((info.total//1048576)/1024), end="    ")
            print("空余显存: {}G".format((info.free//1048576)/1024), end="    ")
            print("已用显存: {}G".format((info.used//1048576)/1024), end="    ")
            print("显存占用率: {}%".format(info.used/info.total), end="    ")
            print("运行温度: {}摄氏度 ]".format(nvmlDeviceGetTemperature(handle,0)))
        total_memory += (info.total//1048576)/1024
        total_free += (info.free//1048576)/1024
        total_used += (info.used//1048576)/1024
    print("显卡名称:[{}],显卡数量:[{}],总共显存;[{}G],空余显存:[{}G],已用显存:[{}G],显存占用率:[{}%]。".format(gpu_name, gpu_num, total_memory, total_free, total_used, (total_used/total_memory)))
    #关闭管理工具
    nvmlShutdown()
def use_gpu(used_percentage=0.75):
    '''
    不使用显存占用率高于used_percentage的gpu
    :param used_percentage:
    :return:
    '''
    nvmlInit()
    gpu_num = nvmlDeviceGetCount()
    out = ""
    for i in range(gpu_num):
        handle = nvmlDeviceGetHandleByIndex(i)
        info = nvmlDeviceGetMemoryInfo(handle)
        used_percentage_real = info.used / info.total
        if out == "":
            if used_percentage_real < used_percentage:
                out += str(i)
        else:
            if used_percentage_real < used_percentage:
                out += "," + str(i)
    nvmlShutdown()
    return out
show_gpu(False)
os.environ["CUDA_VISIBLE_DEVICES"] = use_gpu(0.5)  # 选择使用训练的GPU

image.gif

实现效果

image.gif编辑

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
370 27
|
18天前
|
人工智能 并行计算 PyTorch
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
71 4
|
1月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
|
5月前
|
人工智能 并行计算 开发者
CUDA重大更新:原生Python可直接编写高性能GPU程序
NVIDIA在2025年GTC大会上宣布CUDA并行计算平台正式支持原生Python编程,消除了Python开发者进入GPU加速领域的技术壁垒。这一突破通过重新设计CUDA开发模型,引入CUDA Core、cuPyNumeric、NVMath Python等核心组件,实现了Python与GPU加速的深度集成。开发者可直接用Python语法进行高性能并行计算,显著降低门槛,扩展CUDA生态,推动人工智能、科学计算等领域创新。此更新标志着CUDA向更包容的语言生态系统转型,未来还将支持Rust、Julia等语言。
398 3
CUDA重大更新:原生Python可直接编写高性能GPU程序
|
8月前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
1864 100
|
9月前
|
人工智能 文字识别 异构计算
NVIDIA-Ingest:英伟达开源智能文档提取及结构化工具,支持 GPU 加速和并行处理
NVIDIA-Ingest 是英伟达开源的智能文档提取工具,支持 PDF、Word、PPT 等多种格式,提供并行处理和 GPU 加速,适用于企业内容管理和生成式应用。
347 18
NVIDIA-Ingest:英伟达开源智能文档提取及结构化工具,支持 GPU 加速和并行处理
|
8月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
327 6
|
8月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
11月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
878 5