一文读懂:LoRA实现大模型LLM微调

简介: 一文读懂:LoRA实现大模型LLM微调

为什么要进行微调?


在快速发展的人工智能领域中,以高效和有效的方式使用大型语言模型变得越来越重要。

预训练的大型语言模型通常被称为优秀的基础模型,原因在于它们在各种任务上表现出色,


而大模型微调是将其适应到特定的目标任务或领域中。尽管预训练的大型语言模型在各种任务上表现出色,但它们并不是为特定任务而设计的。通过微调,我们可以根据目标任务的需求对模型进行调整,使其在该任务上的性能得到进一步提升。

微调使我们能够将模型调整到目标领域和目标任务。然而,它在计算上可能非常昂贵-模型越大,更新其层的成本就越高。作为更新所有层的替代方法,已经开发了参数高效的方法,例如前缀调整和适配器。


现在,又出现了一种更流行的参数高效微调技术:

低秩适应(LoRA)。LoRA是什么?它是如何工作的?与其他流行的微调方法相比如何?让我们在本文中回答所有这些问题!


LoRA思路


低秩适应(Low-Rank Adaptation)是一种参数高效的微调技术,其核心思想是对大型模型的权重矩阵进行隐式的低秩转换。

什么是低秩转换呢?

整体的想法和概念与主成分分析(PCA)和奇异值分解(SVD)有关,我们通过一个较低维度的表示来近似表示一个高维矩阵或数据集。

换句话说,我们试图找到原始特征空间(或矩阵)中少数维度的(线性)组合,能够捕捉数据集中大部分的信息。

如下图所示:


313dd2eb5b7f42219233a72d588f8f76.png

提高权重更新效率


1687318371542.png

d53bcbb719064c9791ba59b5e6beefed.png

f7ef5d3baf8c45039dc7c85581f6fe1b.png


当我们训练神经网络中的全连接(即“稠密”)层时,如上图所示,权重矩阵通常具有完整秩(full rank)。完整秩是一个技术术语,意味着矩阵的行或列之间没有线性相关(即“冗余”)关系。相反,与完整秩相对应,低秩意味着矩阵具有冗余的行或列。详细理解如下图所示:


在深度学习中,权重矩阵通常具有完整秩,这意味着权重矩阵的行或列之间没有线性相关关系,也就是说,每个权重在模型中承担了不同的作用,没有冗余。这种情况下,权重矩阵能够充分表达模型的复杂性和丰富的特征表示能力。权重矩阵具有完整秩的好处是,模型可以通过学习到的权重进行准确的预测和分类。每个权重都对模型的输出产生影响,而且没有多余的冗余信息。

然而,在某些情况下,完整秩的权重矩阵可能会导致一些问题。例如,当训练数据量较少或数据噪声较多时,权重矩阵可能会过拟合,导致模型泛化能力下降。此外,权重矩阵中的大量参数可能会导致计算和存储的开销很大。

因此,在一些参数效率方面的研究中,人们开始关注如何利用低秩矩阵来表示权重矩阵。通过使用低秩矩阵,我们可以降低参数的数量,减少计算和存储的开销,并且仍然保留了大部分原始权重矩阵的关键信息。这样,我们可以在保持模型性能的同时,提高计算效率和模型的可解释性


因此,虽然预训练模型的权重在预训练任务中具有完整秩,但LoRA的作者指出,当预训练的大型语言模型适应新任务时,其固有维度很低,这是根据Aghajanyan等人的研究(2020)得出的。(换句话说:实际微调后的权重其实对比原始模型,能用到的权重其实很少)


低秩维度意味着数据可以通过较低维度的空间有效表示或近似,同时保留其大部分重要信息或结构。换句话说,这意味着我们可以将适应任务的新权重矩阵分解为较低维度(较小)的矩阵,而不会丢失太多重要信息。


1687318400745.png

选择低的秩


上图中的r rr是一个超参数,我们可以用它来指定适应过程中所使用的低秩矩阵的等级。较小的r rr会导致简化的低秩矩阵,从而减少适应过程中需要学习的参数数量。这可以加快训练速度,可能减少计算需求。

然而,较小的r rr会降低低秩矩阵捕捉特定任务信息的能力。这可能导致适应质量较低,模型在新任务上的表现可能不如较高的r rr好。

总结起来,在LoRA中选择较小的r rr存在模型复杂性、适应能力以及欠拟合或过拟合的风险之间的权衡。因此,重要的是尝试不同的r rr值,以找到适合新任务所需性能的合适平衡点。


实现LoRA


LoRA的实现相对简单。我们可以将其视为LLM中全连接层的修改后的前向传播。伪代码如下所示:


input_dim = 768 # 例如,预训练模型的隐藏大小
output_dim = 768 # 例如,层的输出大小
rank = 8 # 低秩适应的等级'r'
W = ... # 来自预训练网络的权重,形状为 input_dim x output_dim
W_A = nn.Parameter(torch.empty(input_dim, rank)) # LoRA权重A
W_B = nn.Parameter(torch.empty(rank, output_dim)) # LoRA权重B初始化LoRA权重
nn.init.kaiming_uniform_(W_A, a=math.sqrt(5))
nn.init.zeros_(W_B)
def regular_forward_matmul(x, W):
  h = x @ W
  return h
def lora_forward_matmul(x, W, W_A, W_B):
  h = x @ W # 常规矩阵乘法
  h += x @ (W_A @ W_B) * alpha # 使用缩放的LoRA权重
  return h

1687318444225.png

LoRA在LLaMA实现


现在,让我们使用LoRA对Meta的流行LLaMA模型进行微调的实现。除了用于训练和运行LLaMA本身(使用原始的Meta LLaMA权重)的代码外,它还包含使用LLaMA-Adapter和LoRA对LLaMA进行微调的代码。推荐阅读以下教程文件:


下载预训练权重 [ download_weights.md ]

使用LoRA进行微调 [ finetune_lora.md ]

使用Adapter进行微调 [finetune_adapter.md ](可选,用于比较研究)

相关文章
|
1月前
|
数据采集 自然语言处理 供应链
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
数据投毒通过在训练数据中植入恶意样本,将后门永久嵌入大模型,仅需数百份毒样本即可触发数据泄露、越狱等行为,防御需结合溯源、聚类分析与自动化检测。
212 2
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
|
1月前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
1689 2
|
1月前
|
机器学习/深度学习 缓存 监控
139_剪枝优化:稀疏模型压缩 - 分析结构化剪枝的独特速度提升与LLM部署加速实践
随着大语言模型(LLM)规模的不断增长,模型参数量已从最初的数亿扩展到数千亿甚至万亿级别。这种规模的模型在推理过程中面临着巨大的计算和内存挑战,即使在最先进的硬件上也难以高效部署。剪枝优化作为一种有效的模型压缩技术,通过移除冗余或不重要的参数,在保持模型性能的同时显著减少计算资源需求。
|
1月前
|
机器学习/深度学习 算法 物联网
Google开源Tunix:JAX生态的LLM微调方案来了
Tunix是Google推出的基于JAX的LLM后训练库,支持微调、强化学习与知识蒸馏,集成Flax NNX,主打TPU优化与模块化设计,支持QLoRA等高效训练方法,适用于高性能分布式训练场景。
266 13
Google开源Tunix:JAX生态的LLM微调方案来了
|
1月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
427 2
|
1月前
|
机器学习/深度学习 缓存 PyTorch
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
1月前
|
数据采集 机器学习/深度学习 自然语言处理
98_数据增强:提升LLM微调效果的关键技术
在大语言模型(LLM)的微调过程中,数据质量与数量往往是决定最终性能的关键因素。然而,获取高质量、多样化且标注准确的训练数据却常常面临诸多挑战:数据标注成本高昂、领域特定数据稀缺、数据分布不均等问题都会直接影响微调效果。在这种背景下,数据增强技术作为一种能够有效扩充训练数据并提升其多样性的方法,正发挥着越来越重要的作用。

热门文章

最新文章