从Transformer到ViT:多模态编码器算法原理解析与实现

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 从Transformer到ViT:多模态编码器算法原理解析与实现

Transformer架构是一种使用自注意力机制的神经网络,最初是由谷歌提出的,被广泛应用于自然语言处理和图像处理任务中。它是一种基于注意力机制的深度学习模型,适用于序列到序列的学习任务,例如机器翻译、语音识别、文本摘要等。


多模态Transformer前部分encoder算法是近年来在计算机视觉领域备受瞩目的研究方向之一。它的出现极大地推动了多模态信息的融合与处理,被广泛应用于图像、文本等多种数据类型的处理。


其中,Vision Transformer(ViT)是一种以Transformer为基础的视觉编码器,已经在各种视觉任务中取得了极佳的效果。本篇博客将介绍多模态Transformer前部分encoder算法的原理,重点讲解其在ViT中的实现,同时附带完整的ViT代码实现。如果您对多模态Transformer前部分encoder算法感兴趣,或是对ViT的实现方式想要深入了解,本文或许能为您提供帮助。


下面是vit模型核心架构图,下文是对模型架构各部分做了详细的介绍。


1e3f79cb9f364ab4b38a43e1a231449b.png


模型架构与算法原理


Image Token Embedding


1687315902568.png


Multi-head Self-attention流程


1687315924829.png

线性变换


1687315958723.png

cbe9a9d814054d0e87b94a7cb5e5f3d3.png


1687315980310.png


aa928b5eba8d43b08855645c94cac81c.png


Scale和softmax


1687316018248.png


MatMul


1687316043373.png

aa928b5eba8d43b08855645c94cac81c.png


1b8152baab2744c3b79a02570b2b774a.png5ee616b28da347ec9c96622bafe732c4.png


上面这种是对于自注意力的,还有一种多注意力

多注意力实现其实就是多个自注意力这样的结构结合起来,如下图所示

f03ce78ceabb4217b28c321f4226c220.png

1687316100418.png

多头只是从计算上来说,每一个自注意的q不仅要与自己的k和v计算,还要结合其他的自注意的k和v计算。


最简单的例子来理解注意力,举例一个生活的例子来说


当我们将自注意力算法类比为一个学生学习一门学科的过程时,可以将q qq看作是学生的注意力,k kk看作是这门学科的大纲,v vv则代表着这个学科的教材的内容。通过计算q qq与k kk的相似度,可以得到学生消耗注意力与大纲中不同知识点之间的分配权重,从而确定学生应该集中注意力去学习哪些知识点。最后,通过将这些权重乘以v vv,可以得到学生学习到的知识内容。


多头注意力算法可以被类比为一个学生在学习多门学科的情况。在这种情况下,不同的学科可能具有不同的难度、内容和格式。因此,学生的注意力在不同的学科中可能有所不同。通过多头注意力算法,我们可以将学生的注意力q qq与不同学科大纲中的知识点k kk以及学科的教材内容v vv相乘,从而得到不同学科下的学习成果。这样做的好处是,可以更好地利用不同学科中的优势,进一步提高学生的学习效果。


前向层模块


1687316182822.png


ADD NORM模块


1687316196437.png


思考


搞懂了算法各结构的原理,如下是我个人的几个思考


为什么这种transformer结构,将原始特征向量通过与上下文(或者上下图像)的相似度计算,得出的新的特征向量能够更准确的代表这个数据的特征向量呢?

Transformer 结构在自然语言处理和计算机视觉等领域广泛应用,主要原因是它具有以下优点:


上下文信息丰富。相比于传统的基于手工设计特征的方法,Transformer能够利用上下文信息对特征向量进行更加准确的表示。在自然语言处理中,上下文可以是当前单词所处的句子或段落,而在计算机视觉中,上下文可以是当前像素所处的图像区域。

处理长序列能力强。由于使用了自注意力机制,Transformer 能够对长序列进行有效的处理。在自然语言处理中,这使得Transformer 能够处理长文本,而在计算机视觉中,这使得 Transformer 能够对高分辨率的图像进行处理。

端到端的学习。Transformer结构能够直接从原始数据中学习特征表示,而无需手工设计特征。这使得模型能够从原始数据中学习到更加准确的特征表示,从而提高了模型的性能。


为什么多头注意力,比自注意力效果更好呢


多头注意力是一种在 Transformer 模型中使用的注意力机制,相比于单独使用自注意力机制,它能够提高模型的表现。这主要是由于以下几个原因:


多头注意力能够并行处理不同信息。在多头注意力中,模型使用多个注意力头同时学习不同的信息。这意味着模型能够并行处理多个不同的信息,从而加速模型的训练和推断过程。

多头注意力能够学习更加复杂的特征表示。由于多头注意力能够并行处理多个信息,模型能够学习更加复杂的特征表示。这能够帮助模型捕捉更加丰富和多样化的特征,从而提高模型的表现。

多头注意力能够提高模型的泛化能力。在多头注意力中,每个注意力头都能够学习不同的特征表示,这使得模型更加鲁棒并能够更好地泛化到新的数据。

总的来说,多头注意力能够并行处理多个信息,学习更加复杂的特征表示,并提高模型的泛化能力,这使得它比单独使用自注意力机制效果更好。


在transformer中encoder叠加了多个,它的作用是什么呢,是不断更精细化的求出图像与图像相似度之间的关系吗


在 Transformer 模型中,encoder 叠加了多个层,每个层都包含了多头注意力和前馈神经网络。encoder 叠加多层的作用是逐渐提取和组合输入序列中的信息,并生成更加准确的特征表示。这些特征表示最终被用于后续的任务,如机器翻译、语言模型、文本分类等。


具体来说,encoder 中的每一层都能够进一步优化模型的特征表示。通过多层叠加,模型能够逐渐捕捉输入序列中的更多信息,从而生成更加准确的特征表示。这些特征表示能够反映输入序列中的重要信息,并能够被用于后续的任务。


因此,encoder 叠加多层的作用并不是仅仅更精细地求出图像与图像之间的相似度,而是逐渐提取和组合输入序列中的信息,生成更加准确的特征表示,从而提高模型的性能。在计算机视觉任务中,输入序列可能是图像的像素值序列或者是图像的特征表示序列,而不仅仅是图像与图像之间的相似度。


多模态模型应用的感想


掌握了transformer就是前半部分,就算是知道了,我们现在有的数据图像、语音、文本是如何转为模型的特征向量了,


能获取到这些特征向量,应该说就可以输出任何标签类的任务,从实现原理熵也就是在transformer结构下游,增加全连接层实现输出。(这也是在大模型中使用预训练模型微调的一种方法)。

Paddle实现vit模型


# ViT Online Class
# Author: Dr. Zhu
# Project: PaddleViT (https://github.com/BR-IDL/PaddleViT)
# 2021.11
import paddle
import paddle.nn as nn
import numpy as np
from PIL import Image
paddle.set_device('cpu')
class Identity(nn.Layer):
    def __init__(self):
        super().__init__()
    def forward(self, x):
        return x
class Mlp(nn.Layer):
    def __init__(self, embed_dim, mlp_ratio=4.0, dropout=0.):
        super().__init__()
        self.fc1 = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
        self.fc2 = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
        self.act = nn.GELU()
        self.dropout = nn.Dropout(dropout)
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.dropout(x)
        x = self.fc2(x)
        return x
class PatchEmbedding(nn.Layer):
    def __init__(self, image_size, patch_size, in_channels, embed_dim, dropout=0.):
        super().__init__()
        self.patch_embedding = nn.Conv2D(in_channels, embed_dim, patch_size, patch_size)
        self.dropout = nn.Dropout(dropout)
    def forward(self, x):
        # [n, c, h, w]
        x = self.patch_embedding(x) # [n, c', h', w']
        x = x.flatten(2) # [n, c', h'*w']
        x = x.transpose([0, 2, 1]) # [n, h'*w', c']
        x = self.dropout(x)
        return x
class Attention(nn.Layer):
    # TODO: 补全时,删除pass
    def __init__(self, embed_dim, num_heads, qkv_bias=False, qk_scale=None, dropout=0., attention_dropout=0.):
        super().__init__()
        self.num_heads = num_heads 
        self.attn_head_size = int(embed_dim / self.num_heads)
        self.all_head_size = self.attn_head_size * self.num_heads
        self.qkv = nn.Linear(embed_dim, self.all_head_size*3)
        if qk_scale == None:
            self.scales = self.attn_head_size ** -0.5
        else:
            self.scales = qk_scale
        self.proj = nn.Linear(self.all_head_size, embed_dim)
        self.attn_dropout = nn.Dropout(attention_dropout)
        self.proj_dropout = nn.Dropout(dropout)
        self.softmax = nn.Softmax(axis=-1)
    def transpose_multihead(self, x):
        new_shape = x.shape[:-1] + [self.num_heads, self.attn_head_size]
        x = x.reshape(new_shape)
        x = x.transpose([0, 2, 1, 3])
        return x
    def forward(self, x):
        qkv = self.qkv(x).chunk(3, axis=-1)
        q, k, v = map(self.transpose_multihead, qkv)
        attn = paddle.matmul(q, k, transpose_y=True)
        attn = attn * self.scales
        attn = self.softmax(attn)
        attn_weights = attn
        attn = self.attn_dropout(attn)
        z = paddle.matmul(attn, v)
        z = z.transpose([0, 2, 1, 3])
        new_shape = z.shape[:-2] + [self.all_head_size]
        z = z.reshape(new_shape)
        z = self.proj(z)
        z = self.proj_dropout(z)
        return z, attn_weights
class EncoderLayer(nn.Layer):
    def __init__(self, embed_dim):
        super().__init__()
        self.attn_norm = nn.LayerNorm(embed_dim)
        self.attn = Attention()
        self.mlp_norm = nn.LayerNorm(embed_dim)
        self.mlp = Mlp(embed_dim)
    def forward(self, x):
        h = x 
        x = self.attn_norm(x)
        x = self.attn(x)
        x = x + h
        h = x
        x = self.mlp_norm(x)
        x = self.mlp(x)
        x = x + h
        return x
class ViT(nn.Layer):
    def __init__(self):
        super().__init__()
        self.patch_embed = PatchEmbedding(224, 7, 3, 16)
        layer_list = [EncoderLayer(16) for i in range(5)]
        self.encoders = nn.LayerList(layer_list)
        self.head = nn.Linear(16, 10)
        self.avgpool = nn.AdaptiveAvgPool1D(1)
        self.norm = nn.LayerNorm(16)
    def forward(self, x):
        x = self.patch_embed(x) # [n, h*w, c]: 4, 1024, 16
        for encoder in self.encoders:
            x = encoder(x)
        # avg
        x = self.norm(x)
        x = x.transpose([0, 2, 1])
        x = self.avgpool(x)
        x = x.flatten(1)
        x = self.head(x)
        return x
def main():
    t = paddle.randn([4, 16, 96])
    print('input shape = ', t.shape)
    model = Attention(embed_dim=96, num_heads=8, 
                      qkv_bias=False, qk_scale=None, dropout=0., attention_dropout=0.)
    print(model)
    out, attn_weights = model(t)
    print(out.shape)
    print(attn_weights.shape)
if __name__ == "__main__":
    main()
相关文章
|
2月前
|
机器学习/深度学习 算法 数据可视化
从另一个视角看Transformer:注意力机制就是可微分的k-NN算法
注意力机制可理解为一种“软k-NN”:查询向量通过缩放点积计算与各键的相似度,softmax归一化为权重,对值向量加权平均。1/√d缩放防止高维饱和,掩码控制信息流动(如因果、填充)。不同相似度函数(点积、余弦、RBF)对应不同归纳偏置,多头则在多个子空间并行该过程。
306 6
|
4月前
|
人工智能 前端开发 机器人
10+热门 AI Agent 框架深度解析:谁更适合你的项目?
选型Agent框架不等于追热门!要选真正能跑得稳、适配团队能力与业务需求的框架。架构选错,轻则性能差,重则项目难推进。本文详解10大热门框架对比、5大新兴框架推荐及四步选型法,助你高效落地AI应用。
|
6月前
|
自然语言处理 测试技术 开发工具
通义灵码上下文能力解析:自由组合需求描述,生成结果更高效
通义灵码提供智能会话能力,支持智能问答、文件编辑和智能体三种模式,帮助开发者解决编码问题,进行代码修复、调试及运行错误排查。它具备多文件修改、自主决策等能力,可端到端完成编码任务。在智能会话中,支持丰富的上下文(如代码文件、目录、图片、Git Commit 等),并允许用户自由组合提示词与上下文。插件可通过链接下载。此外,还支持多种上下文类型(#file、#folder、#image 等),便于开发者精准表达需求。
|
2月前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
770 6
|
1月前
|
存储 缓存 算法
淘宝买家秀 API 深度开发:多模态内容解析与合规推荐技术拆解
本文详解淘宝买家秀接口(taobao.reviews.get)的合规调用、数据标准化与智能推荐全链路方案。涵盖权限申请、多模态数据清洗、情感分析、混合推荐模型及缓存优化,助力开发者提升审核效率60%、商品转化率增长28%,实现UGC数据高效变现。
|
2月前
|
人工智能 自然语言处理 算法
现代AI工具深度解析:从GPT到多模态的技术革命与实战应用
蒋星熠Jaxonic,AI技术探索者,深耕代码生成、多模态AI与提示词工程。分享AI工具架构、实战应用与优化策略,助力开发者提升效率,共赴智能编程新纪元。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
微调之后还能做什么?大模型后训练全链路技术解析
本文探讨了后训练的重要性、方法以及最新进展。文章将包含理论分析与实际操作指南,适合希望深入了解并应用这些技术的开发者。
1026 18
微调之后还能做什么?大模型后训练全链路技术解析
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
38_多模态模型:CLIP的视觉-语言对齐_深度解析
想象一下,当你看到一张小狗在草地上奔跑的图片时,你的大脑立刻就能将视觉信息与"小狗"、"草地"、"奔跑"等概念联系起来。这种跨模态的理解能力对于人类来说似乎是理所当然的,但对于人工智能系统而言,实现这种能力却经历了长期的技术挑战。多模态学习的出现,标志着AI从单一模态处理向更接近人类认知方式的综合信息处理迈出了关键一步。

热门文章

最新文章

推荐镜像

更多
  • DNS