OpenCV入门(C++/Python)- 使用OpenCV进行图像旋转和转换(五)

简介: OpenCV入门(C++/Python)- 使用OpenCV进行图像旋转和转换(五)

近年来,随着手机具有这种内置功能,图像编辑变得越来越流行,它可以让您裁剪、旋转图像并对图像进行更多处理。

在这篇文章中,我们将探索和学习这些图像编辑技术。具体来说,我们将学习如何:

  • 旋转图像
  • 转换或移动图像内容

基本图像转换操作


图像的旋转和平移是图像编辑中最基本的操作之一。两者都属于更广泛的仿射变换类别。因此,在研究更复杂的转换之前,您应该首先学习使用OpenCV中可用的函数旋转和平移图像。查看下面的图片,我们将在这里的所有转换示例中使用它。


先看看下面的代码,这些代码将用于使用OpenCV执行图像旋转


Python


import cv2
# Reading the image
image = cv2.imread('image.jpg')
# dividing height and width by 2 to get the center of the image
height, width = image.shape[:2]
# get the center coordinates of the image to create the 2D rotation matrix
center = (width/2, height/2)
# using cv2.getRotationMatrix2D() to get the rotation matrix
rotate_matrix = cv2.getRotationMatrix2D(center=center, angle=45, scale=1)
# rotate the image using cv2.warpAffine
rotated_image = cv2.warpAffine(src=image, M=rotate_matrix, dsize=(width, height))
cv2.imshow('Original image', image)
cv2.imshow('Rotated image', rotated_image)
# wait indefinitely, press any key on keyboard to exit
cv2.waitKey(0)
# save the rotated image to disk
cv2.imwrite('rotated_image.jpg', rotated_image)


C++


#include <iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
int main(int, char**) 
{
    Mat image = imread("image.jpg");
    imshow("image", image);
    waitKey(0);
    double angle = 45;
    // get the center coordinates of the image to create the 2D rotation matrix
    Point2f center((image.cols - 1) / 2.0, (image.rows - 1) / 2.0);
    // using getRotationMatrix2D() to get the rotation matrix
    Mat rotation_matix = getRotationMatrix2D(center, angle, 1.0);
    // we will save the resulting image in rotated_image matrix
    Mat rotated_image;
    // rotate the image using warpAffine
    warpAffine(image, rotated_image, rotation_matix, image.size());
    imshow("Rotated image", rotated_image);
    // wait indefinitely, press any key on keyboard to exit
    waitKey(0);
    // save the rotated image to disk
    imwrite("rotated_im.jpg", rotated_image);
    return 0;
}


使用OpenCV的图像旋转


1687312766770.png


其中c x  和c y 是图像旋转所沿的坐标。


OpenCV提供getRotationMatrix2D()函数来创建上述转换矩阵。

以下是创建二维旋转矩阵的语法:


getRotationMatrix2D(center, angle, scale)


getRotationMatrix2D()函数接受以下参数:


  • center:输入图像的旋转中心
  • angle:以度为单位的旋转角度
  • scale:各向同性比例因子,根据提供的值向上或向下缩放图像


如果角度为正,图像将沿逆时针方向旋转。如果要将图像顺时针旋转相同的角度,则角度需要为负值。


旋转图像的三步操作:


  1. 首先,得到旋转中心。及旋转的图像的中心。
  2. 接下来,创建二维旋转矩阵。OpenCV提供了上面讨论的getRotationMatrix2D()函数。
  3. 最后,使用在上一步中创建的旋转矩阵将仿射变换应用于图像。OpenCV中的warpAffine()函数完成此任务。


warpAffine()函数对图像应用仿射变换。在应用仿射变换之后,原始图像中的所有平行线也将在输出图像中保持平行。


warpAffine()的完整语法如下:


warpAffine(src, M, dsize[, dst[, flags[,borderMode[,borderValue]]]])


以下是函数的参数:

  • src:源图像
  • M: 变换矩阵
  • dsize:输出图像的大小 d
  • dst:输出图像
  • flags:插值方法的组合,如INTER_LINEAR或INTER_NEAREST
  • borderMode:像素外推方法
    borderValue:在常量边框的情况下使用的值,默认值为0


下面举一个具体的例子,并尝试使用OpenCV来实现它


Python


import cv2
# Reading the image
image = cv2.imread('image.jpg')
# Dividing height and width by 2 to get the center of the image
height, width = image.shape[:2]
center = (width/2, height/2)


C++


#include "opencv2/opencv.hpp"
using namespace cv;
# Reading the image
Mat image = imread("image.jpg");
// get the center coordinates of the image to create the 2D rotation matrix
Point2f center((image.cols - 1) / 2.0, (image.rows - 1) / 2.0);


获得图像中心的像素坐标后,使用函数getRotationMatrix2D()计算旋转矩阵,如下所示。此函数将以下内容作为输入:


旋转所围绕的中心点

旋转角度,以度为单位(正值,对应于逆时针旋转)

调整图像大小的各向同性比例因子。这可以是一个浮点值。例如,值1.0将保持输出图像与源图像的大小相同。值为2.0将使生成的图像的大小是源图像的两倍

该函数返回2D旋转矩阵,该矩阵将在下一步中用于旋转图像。


Python


# the above center is the center of rotation axis
# use cv2.getRotationMatrix2D() to get the rotation matrix
rotate_matrix = cv2.getRotationMatrix2D(center=center, angle=45, scale=1)


C++


// create the rotation matrix using the image center
Mat rotation_matix = getRotationMatrix2D(center, angle=45, 1.0);


现在,使用warpAffine()函数将计算的旋转矩阵应用于图像。它需要三个输入:

  • 源图像
  • 旋转矩阵
  • 输出图像的大小


Python


# Rotate the image using cv2.warpAffine
rotated_image = cv2.warpAffine(src=image, M=rotate_matrix, dsize=(width, height))


C++


// we will save the resulting image in rotated_image matrix
Mat rotated_image;
// apply affine transformation to the original image using the 2D rotation matrix
warpAffine(image, rotated_image, rotation_matix, image.size());


现在,使用imshow()函数显示旋转后的图像。


Python


# visualize the original and the rotated image
cv2.imshow('Original image', image)
cv2.imshow('Rotated image', rotated_image)
# wait indefinitely, press any key on keyboard to exit
cv2.waitKey(0)
# write the output, the rotated image to disk
cv2.imwrite('rotated_image.jpg', rotated_image)


C++



imshow("Rotated image", rotated_image);
waitKey(0);
// save the rotated image to disk
imwrite("rotated_im.jpg", rotated_image);


使用OpenCV转换图像


1687312964945.png


代码如下:

Python


import cv2 
import numpy as np
# read the image 
image = cv2.imread('image.jpg')
# get the width and height of the image
height, width = image.shape[:2]


C++


#include "opencv2/opencv.hpp"
using namespace cv
// read the image 
Mat image = imread("image.jpg");
// get the height and width of the image
int height = image.cols;
int width = image.rows;


创建转换矩阵

Python


# get tx and ty values for translation
# you can specify any value of your choice
tx, ty = width / 4, height / 4
# create the translation matrix using tx and ty, it is a NumPy array 
translation_matrix = np.array([
    [1, 0, tx],
    [0, 1, ty]
], dtype=np.float32)


C++


// get tx and ty values for translation
float tx = float(width) / 4;
float ty = float(height) / 4;
// create the translation matrix using tx and ty
float warp_values[] = { 1.0, 0.0, tx, 0.0, 1.0, ty };
Mat translation_matrix = Mat(2, 3, CV_32F, warp_values);


在本例中,您将宽度和高度的四分之一作为转换值。

使用warpAffine()函数将平移矩阵应用于图像,与旋转原理相同。

Python


# apply the translation to the image
translated_image = cv2.warpAffine(src=image, M=translation_matrix, dsize=(width, height))


C++


// save the resulting image in translated_image matrix
Mat translated_image;
// apply affine transformation to the original image using the translation matrix
warpAffine(image, translated_image, translation_matrix, image.size());


注意:warpAffine()是一个通用函数,可用于对图像应用任何类型的仿射变换。只需适当地定义矩阵M。


最后,使用imshow()函数显示旋转后的图像。


Python


# display the original and the Translated images
cv2.imshow('Translated image', translated_image)
cv2.imshow('Original image', image)
cv2.waitKey(0)
# save the translated image to disk
cv2.imwrite('translated_image.jpg', translated_image)


C++


//display the original and the Translated images
imshow("Translated image", translated_image);
imshow("Original image", image);
waitKey(0);
// save the translated image to disk
imwrite("translated_image.jpg", translated_image);


相关文章
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
4天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
4天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
17 3
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
329 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
49 4
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
3月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
3月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
108 1
|
5月前
|
算法 计算机视觉
【Qt&OpenCV 图像的感兴趣区域ROI】
【Qt&OpenCV 图像的感兴趣区域ROI】
167 1