OpenCV入门(C++/Python)-使用OpenCV裁剪图像(四)

简介: OpenCV入门(C++/Python)-使用OpenCV裁剪图像(四)

裁剪是为了从图像中删除所有不需要的物体或区域。甚至突出显示图像的特定功能。


使用OpenCV裁剪没有特定的功能,NumPy数组切片是工作。读取的每个图像都存储在2D数组中(对于每个颜色通道)。只需指定要裁剪区域的高度和宽度(以像素为单位),就可以完成


1.使用OpenCV裁剪


以下代码片段展示了如何使用Python和C++裁剪图像。在例子的进一步,您将详细了解这些。


Python


# Import packages
import cv2
import numpy as np
img = cv2.imread('test.jpg')
print(img.shape) # Print image shape
cv2.imshow("original", img)
# Cropping an image
cropped_image = img[400:1200, 350:700]
# Display cropped image
cv2.imshow("cropped", cropped_image)
# Save the cropped image
cv2.imwrite("Cropped Image.jpg", cropped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()


C++


// Include Libraries
#include<opencv2/opencv.hpp>
#include<iostream>
// Namespace nullifies the use of cv::function();
using namespace std;
using namespace cv;
int main()
{
  // Read image
  Mat img = imread("test.jpg");
  cout << "Width : " << img.size().width << endl;
  cout << "Height: " << img.size().height << endl;
  cout<<"Channels: :"<< img.channels() << endl;
  // Crop image
  Mat cropped_image = img(Range(400,1200), Range(350,700));
  //display image
  imshow(" Original Image", img);
  imshow("Cropped Image", cropped_image);
  //Save the cropped Image
  imwrite("Cropped Image.jpg", cropped_image);
  // 0 means loop infinitely
  waitKey(0);
  destroyAllWindows();
  return 0;
}


上面的代码读取并显示图像及其尺寸。尺寸不仅包括二维矩阵的宽度和高度,还包括通道的数量(例如,RGB图像有3个通道——红色、绿色和蓝色)。

让我们尝试裁剪图像中包含美女的部分。


Python


cropped_image = img[400:1200, 350:700] # Slicing to crop the image
# Display the cropped image
cv2.imshow("cropped", cropped_image)
cv2.waitKey(0)
cv2.destroyAllWindows() 


C++


Mat crop = img(Range(400,1200),Range(350,700)); // Slicing to crop the image
// Display the cropped image
imshow("Cropped Image", crop);
waitKey(0);
destroyAllWindows();
return 0;


在Python中,您可以使用与NumPy数组切片相同的方法裁剪图像。要切片数组,您需要指定第一维和第二维的开始和结束索引。

  • 第一个维度总是行数或图像的高度。
  • 第二个维度是列数或图像的宽度。

如何剪切图像的NumPy数组?查看此示例中的语法:


cropped = img[start_row:end_row, start_col:end_col]


在C++中,我们使用Range()函数裁剪图像。

Python同理一样,它也应用切片。

在这里,图像也按照上述相同的约定作为二维矩阵读取。

以下是裁剪图像的C++语法:



img(Range(start_row, end_row), Range(start_col, end_col))
• 1


2.使用裁剪功能对图像进行划分


在OpenCV中裁剪的一个实际应用可以是将图像划分为大小相同图像块。使用循环从图像中裁剪片段。首先从图像的形状中获取所需图像块的高度和宽度


Python


img =  cv2.imread("test_cropped.jpg")
image_copy = img.copy() 
imgheight=img.shape[0]
imgwidth=img.shape[1]


C++


Mat img = imread("test_cropped.jpg");
Mat image_copy = img.clone();
int imgheight = img.rows;
int imgwidth = img.cols;


加载高度和宽度,以指定需要裁剪较小图像块的范围。为此,使用Python中的range()函数。现在,使用两个循环裁剪:


宽度范围

高度范围

已知原图像瘩高度宽度为(1350,1080),我们使用的图像块的高度和宽度分别为(270,216)。内外循环的步幅(我们在图像中移动的像素数)也就是划分下来,有25个图像块。(拼图一样)


Python


M = 216
N = 270
x1 = 0
y1 = 0
for y in range(0, imgheight, M):
    for x in range(0, imgwidth, N):
        if (imgheight - y) < M or (imgwidth - x) < N:
            break
        y1 = y + M
        x1 = x + N
        # check whether the patch width or height exceeds the image width or height
        if x1 >= imgwidth and y1 >= imgheight:
            x1 = imgwidth - 1
            y1 = imgheight - 1
            # Crop into patches of size MxN
            tiles = image_copy[y:y + M, x:x + N]
            # Save each patch into file directory
            cv2.imwrite(str(x) + '_' + str(y) + '.jpg', tiles)
            cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
        elif y1 >= imgheight:  # when patch height exceeds the image height
            y1 = imgheight - 1
            # Crop into patches of size MxN
            tiles = image_copy[y:y + M, x:x + N]
            # Save each patch into file directory
            cv2.imwrite(str(x) + '_' + str(y) + '.jpg', tiles)
            cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
        elif x1 >= imgwidth:  # when patch width exceeds the image width
            x1 = imgwidth - 1
            # Crop into patches of size MxN
            tiles = image_copy[y:y + M, x:x + N]
            # Save each patch into file directory
            cv2.imwrite(str(x) + '_' + str(y) + '.jpg', tiles)
            cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)
        else:
            # Crop into patches of size MxN
            tiles = image_copy[y:y + M, x:x + N]
            # Save each patch into file directory
            cv2.imwrite(str(x) + '_' + str(y) + '.jpg', tiles)
            cv2.rectangle(img, (x, y), (x1, y1), (0, 255, 0), 1)


C++


int M = 216;
int N = 270;
int x1 = 0;
int y1 = 0;
for (int y = 0; y<imgheight; y=y+M)
{
    for (int x = 0; x<imgwidth; x=x+N)
    {
        if ((imgheight - y) < M || (imgwidth - x) < N)
        {
            break;
        }
        y1 = y + M;
        x1 = x + N;
        string a = to_string(x);
        string b = to_string(y);
        if (x1 >= imgwidth && y1 >= imgheight)
        {
            x = imgwidth - 1;
            y = imgheight - 1;
            x1 = imgwidth - 1;
            y1 = imgheight - 1;
            // crop the patches of size MxN
            Mat tiles = image_copy(Range(y, imgheight), Range(x, imgwidth));
            //save each patches into file directory
            imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);  
            rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);    
        }
        else if (y1 >= imgheight)
        {
            y = imgheight - 1;
            y1 = imgheight - 1;
            // crop the patches of size MxN
            Mat tiles = image_copy(Range(y, imgheight), Range(x, x+N));
            //save each patches into file directory
            imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);  
            rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);    
        }
        else if (x1 >= imgwidth)
        {
            x = imgwidth - 1;   
            x1 = imgwidth - 1;
            // crop the patches of size MxN
            Mat tiles = image_copy(Range(y, y+M), Range(x, imgwidth));
            //save each patches into file directory
            imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);  
            rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);    
        }
        else
        {
            // crop the patches of size MxN
            Mat tiles = image_copy(Range(y, y+M), Range(x, x+N));
            //save each patches into file directory
            imwrite("saved_patches/tile" + a + '_' + b + ".jpg", tiles);  
            rectangle(img, Point(x,y), Point(x1,y1), Scalar(0,255,0), 1);    
        }
    }
}


接下来,使用imshow()函数显示图像块拼图。使用imwrite()函数将其保存到文件目录中。

Python


#Save full image into file directory
cv2.imshow("Patched Image",img)
cv2.imwrite("patched.jpg",img)
cv2.waitKey()
cv2.destroyAllWindows()


C++


imshow("Patched Image", img);
imwrite("patched.jpg",img);
waitKey();
destroyAllWindows();


Python

C++

相关文章
|
28天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
29天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
29天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
38 7
|
29天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
70 3
|
8月前
|
人工智能 Java Python
python入门(二)安装第三方包
python入门(二)安装第三方包
108 1
|
3月前
|
机器学习/深度学习 Python
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
本篇将详细介绍如何在Mac系统上安装和配置Anaconda,如何创建虚拟环境,并学习如何使用 `pip` 和 `conda` 管理Python包,直到成功运行第一个Python程序。通过本篇,您将学会如何高效地使用Anaconda创建和管理虚拟环境,并使用Python开发。
88 4
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
|
3月前
|
IDE 开发工具 iOS开发
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
本篇将详细介绍如何在Mac系统上安装Python,并配置Python开发环境。内容涵盖Python的安装、pip包管理工具的配置与国内镜像源替换、安装与配置PyCharm开发工具,以及通过PyCharm编写并运行第一个Python程序。通过本篇的学习,用户将完成Python开发环境的搭建,为后续的Python编程工作打下基础。
287 2
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
|
3月前
|
iOS开发 MacOS Python
【10月更文挑战第1天】「Mac上学Python 1」入门篇1 - 安装Typora与Markdown编辑技巧
本篇将详细介绍如何在Mac系统上安装Typora这款简洁高效的Markdown编辑器,并学习Markdown常用语法。通过本篇,用户能够准备好记录学习笔记的工具,并掌握基本的文档编辑与排版技巧,为后续学习提供便利。
185 1
【10月更文挑战第1天】「Mac上学Python 1」入门篇1 - 安装Typora与Markdown编辑技巧
|
8月前
|
Java Python 开发者
Python 学习之路 01基础入门---【Python安装,Python程序基本组成】
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
513 3
Python 学习之路 01基础入门---【Python安装,Python程序基本组成】
|
3月前
|
Python
【python从入门到精通】-- 第一战:安装python
【python从入门到精通】-- 第一战:安装python
64 0