转:Apriori算法,挖掘数据集中项集的关联规则学习经典

简介: Apriori算法是一种用于挖掘数据集中频繁项集的关联规则学习的经典算法。它基于“Apriori原理”,即如果一个项集是频繁的,那么它的所有子集也必须是频繁的。该算法通过不断生成新的频繁项集来实现。

Apriori算法是一种用于挖掘数据集中频繁项集的关联规则学习的经典算法。它基于“Apriori原理”,即如果一个项集是频繁的,那么它的所有子集也必须是频繁的。该算法通过不断生成新的频繁项集来实现。

Apriori算法的基本步骤如下:

设置最小支持阈值(例如总交易额的2%)并扫描数据集以生成符合阈值的频繁项集的列表。
使用第1步中的频繁项集生成下一级的候选项集列表,这些项集至少具有一个共同的项目。
再次扫描数据集,确定哪些候选项集实际上是频繁的,即检查它们是否符合支持阈值。
重复步骤2和3,直到不能生成更多的频繁项集。
使用之前步骤生成的频繁项集生成关联规则。

Apriori算法具有较高的时间复杂度,因此不适合大型数据集。但是,已经开发了几种优化版本来提高其效率。

这是一个在 Python 中实现 Apriori 算法的示例:
  import itertools

  def apriori(transactions, min_support):
  # 创建事务中唯一项目的列表
  items = set([item for transaction in transactions for item in transaction])

  # 初始化频繁项集列表
  frequent_itemsets = []

  # 遍历唯一项目
  for item in items:
  # 统计每个项目在事务中出现的次数
  item_count = sum([1 for transaction in transactions if item in transaction])

  # 如果项目的支持度大于等于最小支持度
  if item_count/len(transactions) >= min_support:
  # 将项目添加到频繁项集列表中
  frequent_itemsets.append((item, item_count))

  # 遍历频繁项集列表
  for i in range(1, len(frequent_itemsets)):
  # 创建所有可能的项集组合列表
  combinations = list(itertools.combinations(frequent_itemsets, i))

  # 遍历组合
  for combination in combinations:
  # 统计组合在事务中出现的次数
  combination_count = sum([1 for transaction in transactions if   set(combination).issubset(transaction)])

  # 如果组合的支持度大于等于最小支持度
  if combination_count/len(transactions) >= min_support:
  # 将组合添加到频繁项集列表中
  frequent_itemsets.append(combination)

  # 返回频繁项集列表
  return frequent_itemsets

  # 示例用法
  transactions = [['A', 'B', 'C'], ['B', 'C', 'D'], ['A', 'B', 'D'], ['B', 'C', 'E']]
  min_support = 0.5
  print(apriori(transactions, min_support))
image.png

本文转载自:https://www.vipshare.com/archives/39883

目录
相关文章
|
2月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
2月前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
2月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
2月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找习题精讲等具体详解步骤以及举例说明
|
2月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!

热门文章

最新文章