【数据结构】时间复杂度

简介: 【数据结构】时间复杂度

前言:


 从今天开始我们将进入一个全新的环节:数据结构的学习!学习数据结构,首先就要学习算法的效率。下面我就带大家先来了解一下时间复杂度这个概念!


1. 算法效率


1.1 如何衡量一个算法的好坏


如何衡量一个算法的好坏呢?比如对于以下斐波那契数列


long long Fib(int N)
{
  if(N < 3)
  return 1;
  return Fib(N-1) + Fib(N-2);
}


斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?


1.2算法的复杂度


 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。

 经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


2.时间复杂度


2.1 时间复杂度的概念


 时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

举个栗子:


void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N; ++i)
  {
  for (int j = 0; j < N; ++j)
  {
    ++count;
  }
  }
  for (int k = 0; k < 2 * N; ++k)
  {
  ++count;
  }
  int M = 10;
  while (M--)
  {
  ++count;
  }
  printf("%d\n", count);
}


0765d5030841ceb9dcb7d57b05b6ccad_974379b531d3499d9bb41a257dc02958.png


实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这

里我们使用大O的渐进表示法


2.2 大O的渐进表示法


 大O符号(Big O notation):是用于描述函数渐进行为的数学符号。


推导大O阶方法:


用常数1取代运行时间中的所有加法常数。

在修改后的运行次数函数中,只保留最高阶项。

如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

 上面的栗子在使用大O的渐进表示法以后,Func1的时间复杂度为O(N^2)


 通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。


 另外有些算法的时间复杂度存在最好、平均和最坏情况:

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


2.3常见时间复杂度计算举例


实列1:


// 计算Func2的时间复杂度?
void Func2(int N)
{
  int count = 0;
  for (int k = 0; k < 2 * N; ++k)
  {
  ++count;
  }
  int M = 10;
  while (M--)
  {
  ++count;
  }
  printf("%d\n", count);
}




时间复杂度为O(N)

经过计算发现运算最坏情况次数为:2N(M为常数,不影响结果)


实列2:


// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
  int count = 0;
  for (int k = 0; k < M; ++k)
  {
  ++count;
  }
  for (int k = 0; k < N; ++k)
  {
  ++count;
  }
  printf("%d\n", count);
}



时间复杂度为O(M)(M远大于N的时候)

    或O(N)(N远大于M的时候)

经过计算发现运算最坏情况次数为:N+M


实列3:


// 计算Func4的时间复杂度?
void Func4(int N)
{
  int count = 0;
  for (int k = 0; k < 100; ++k)
  {
  ++count;
  }
  printf("%d\n", count);
}



时间复杂度为:O(1)

只要是常数,时间复杂度都为O(1)


实列4:


// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character )


时间复杂度为O(N)

通过解析内部函数我们可以发现,要找到字符串中的字符,最坏情况需要n(字符串长度)次。




实列5:


// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
  assert(a);
  for (size_t end = n; end > 0; --end)
  {
  int exchange = 0;
  for (size_t i = 1; i < end; ++i)
  {
    if (a[i - 1] > a[i])
    {
    Swap(&a[i - 1], &a[i]);
    exchange = 1;
    }
  }
  if (exchange == 0)
    break;
  }
}



时间复杂度:O(N^2)

最好的情况是数组已经排好序,只用遍历一遍,O(N),

最坏的情况是数组没有排序,每一次都需要交换位置,O(N^2)


实列6:


// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
  assert(a);
  int begin = 0;
  int end = n - 1;
  while (begin < end)
  {
  int mid = begin + ((end - begin) >> 1);
  if (a[mid] < x)
    begin = mid + 1;
  else if (a[mid] > x)
    end = mid;
  else
    return mid;
  }
  return -1;
}



时间复杂度为:O(logN)

这是一个典型的二分查找,通过计算我们可以得出最坏情况需要查找log2(n)次


28627d89ba172a2f59fb578209a2734f_c679ab0cc20e449fbb793434850f3865.png


实列7:


// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
  if (0 == N)
  return 1;
  return Fac(N - 1) * N;
}


时间复杂度为O(N)

图解如下:


e302897576b55de0ac68d6e14d4cd4e1_e4aa3d9a1d3142bcb039b4209b575e52.png


实列8:


// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
  if (N < 3)
  return 1;
  return Fib(N - 1) + Fib(N - 2);
}


时间复杂度为O(2^N)

图解如下:通过等比数列求和去掉常数,得到时间复杂度


d5806d4bcd3f380f31e552dd2c498a69_13471c26da194a0cb95271d6039f8c7e.png


总结:


 这就是时间复杂度的基本介绍!更新不易,辛苦各位小伙伴们动动小手,👍三连走一走💕💕 ~ ~ ~ 你们真的对我很重要!最后,本文仍有许多不足之处,欢迎各位认真读完文章的小伙伴们随时私信交流、批评指正!

目录
相关文章
|
7月前
|
算法 搜索推荐 程序员
数据结构中时间复杂度的介绍
冒泡排序是通过重复遍历数组,比较并交换相邻元素来排序数组的。因为它包含两层嵌套循环,每层循环的最大迭代次数近似于n,所以时间复杂度是O(n²)。 通过上述分析,我们可以看到不同代码结构对算法性能有着显著的影响。在设计数据结构和算法时,理解并计算时间复杂度是非常重要的,它帮助程序员选择或优化算法,以处理更大的数据集或提高程序的运行速度。
57 2
|
8月前
|
算法
数据结构:1、时间复杂度
数据结构:1、时间复杂度
42 1
|
3月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
56 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
3月前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
29 0
|
8月前
|
机器学习/深度学习 算法 存储
[数据结构]——算法的时间复杂度和空间复杂度
[数据结构]——算法的时间复杂度和空间复杂度
|
5月前
|
存储 算法
【数据结构】——时间复杂度与空间复杂度
【数据结构】——时间复杂度与空间复杂度
|
7月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
7月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
7月前
|
存储 算法 C语言
数据结构和算法学习记录——初识 数据结构和算法&时间复杂度
数据结构和算法学习记录——初识 数据结构和算法&时间复杂度
40 4
|
7月前
|
算法
数据结构和算法学习记录——时间复杂度、空间复杂度相关练习题
数据结构和算法学习记录——时间复杂度、空间复杂度相关练习题
47 2
下一篇
开通oss服务