【路径规划】基于Dijkstra算法求解机器人栅格地图路径规划及避障附Matlab代码

简介: 【路径规划】基于Dijkstra算法求解机器人栅格地图路径规划及避障附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

1 算法原理

Dijkstra算法是一种经典的用于解决单源最短路径问题的图算法,它可以在带权重的有向或无向图中找到起点到其他所有节点的最短路径。

以下是Dijkstra算法的基本原理:

  1. 初始化数据结构:
  • 创建一个空的开放列表,用于存储待探索的节点。
  • 为每个节点初始化距离值(初始设为无穷大)和已访问标志。
  • 将起点设置为当前节点,并将其距离值设置为0。
  1. Dijkstra搜索过程:
  • 如果相邻节点已被访问或不可达,则忽略。
  • 计算相邻节点的距离值:当前节点的距离值加上从当前节点到相邻节点的边权重。
  • 如果相邻节点的计算距离值小于其当前距离值,则更新相邻节点的距离值。
  • 从开放列表中选择距离值最小且未被访问的节点作为当前节点。
  • 如果当前节点为终点,终止搜索,最短路径已找到。否则,继续以下步骤。
  • 遍历当前节点的相邻节点:
  • 将当前节点标记为已访问,并从开放列表中移除。
  1. 搜索结束后,可以得到从起点到其他所有节点的最短路径。

Dijkstra算法于贪心的思想,在每一步中选择距离值最小的扩展搜索空间,从起点向外层层扩展,逐步更新每个节点的最短路径距离值,直到找到终点或遍历所有可达节点。

需要注意的是,Dijkstra算法对负权边不适用,且在图中存在环路时可能会导致算法陷入死循环。如果图中包含负权边,可以考虑使用其他算法如Bellman-Ford算法。另外,在实际应用中,可以结合堆(Heap)数据结构来高效地实现Dijkstra算法,并提高算法的执行效率。

2 算法流程

基于Dijkstra算法的机器人栅格地图路径规划及避障可以通过以下步骤来实现:

  1. 栅格化地图:将待规划的区域划分为一组栅格,其中包括可通行的区域、障碍物以及起点和终点位置。
  2. 初始化数据结构和参数:
  • 创建一个空的开放列表,用于存储待探索的栅格节点。
  • 为每个栅格节点初始化代价值:实际代价(从起点到当前节点的实际代价)和已访问标志。
  • 将起点添加到开放列表中并设置其实际代价为0。
  1. Dijkstra搜索过程:
  • 如果相邻节点是障碍物或已被访问,则忽略。
  • 计算相邻节点的实际代价:当前节点的实际代价加上从当前节点到相邻节点的代价(如距离、时间等)。
  • 如果相邻节点不在开放列表中,将其相邻节点已经在开放列表中,并且新计算的实际代价更小,则更新实际代价。
  • 选择开放列表中有最小实际代价的节点作为当前节点。
  • 如果当前节点是终点,则搜索结束,成功找到路径。否则,继续以下步骤。
  • 遍历当前节点的相邻节点:
  • 将当前节点标记为已访问,并从开放列表中移 - 如果已找到终点,通过反向追溯从终点到起点的路径链。
  • 得到最终路径,即一系列连续的栅格点。
  1. 避障处理:
  • 对于检测到的障碍物,在路径上进行避障处理。可采用方法如动态窗口法或规避转弯限制等,对路径进行平滑调整,以获得可行的避障路径。
  1. 返回最终路径:
  • 输出经过避障处理后的最终路径给机器人控制系统。

以上步骤基于Dijkstra算法的基本框架实现了机器人栅格地图的路径规划和避障。注意,Dijkstra是无启发式搜索算法,它会完全遍历所有可行路径,因此在搜索过程中不具备优化方面的特性。如果需要引入启发式方法,可以考虑使用A*算法或其他启发式搜索算法来进一步提高效率。此外,实时环境中可能需要地图和路径,以适应机器人在动态环境中的移需求。

⛄ 部分代码

function [field,cmap] = defColorMap(rows, cols)

cmap = [1 1 1; ...       % 1-白色-空地

   0 0 0; ...           % 2-黑色-静态障碍

   1 0 0; ...           % 3-红色-动态障碍

   1 1 0;...            % 4-黄色-起始点

   1 0 1;...            % 5-品红-目标点

   0 1 0; ...           % 6-绿色-到目标点的规划路径  

   0 1 1];              % 7-青色-动态规划的路径


% 构建颜色MAP图

colormap(cmap);


% 定义栅格地图全域,并初始化空白区域

field = ones(rows, cols);


% 障碍物区域

obsRate = 0.2;

obsNum = floor(rows*cols*obsRate);

obsIndex = randi([1,rows*cols],obsNum,1);

field(obsIndex) = 2;

⛄ 运行结果

⛄ 参考文献

[1] 郭梦诗,史腾飞.基于改进Dijkstra算法的机器人路径规划研究[J].电工技术, 2020(20):3.DOI:10.19768/j.cnki.dgjs.2020.20.010.

[2] 潘成浩,中北大学经济与管理学院,山西 太原,潘成浩,等.基于松弛Dijkstra算法的移动机器人路径规划[J].计算机与现代化, 2016(11):5.DOI:10.3969/j.issn.1006-2475.2016.11.004.

[3] 王旭,刘毅,李国燕.基于改进Dijkstra算法的移动机器人路径规划[J].天津城市建设学院学报, 2018.DOI:10.19479/j.2095-719x.1805378.

[4] 李全勇,李波,张瑞,等.基于改进Dijkstra算法的AGV路径规划研究[J].机械工程与自动化, 2021(1):4.DOI:10.3969/j.issn.1672-6413.2021.01.008.

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料





相关文章
|
1天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
6 3
|
13天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
6天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
13 0
|
6月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
124 3
|
19天前
|
人工智能 搜索推荐 机器人
挑战未来职场:亲手打造你的AI面试官——基于Agents的模拟面试机器人究竟有多智能?
【10月更文挑战第7天】基于Agent技术,本项目构建了一个AI模拟面试机器人,旨在帮助求职者提升面试表现。通过Python、LangChain和Hugging Face的transformers库,实现了自动提问、即时反馈等功能,提供灵活、个性化的模拟面试体验。相比传统方法,AI模拟面试机器人不受时间和地点限制,能够实时提供反馈,帮助求职者更好地准备面试。
26 2
|
3月前
|
人工智能 算法 机器人
机器人版的斯坦福小镇来了,专为具身智能研究打造
【8月更文挑战第12天】《GRUtopia:城市级具身智能仿真平台》新论文发布,介绍了一款由上海AI实验室主导的大规模3D城市模拟环境——GRUtopia。此平台包含十万级互动场景与大型语言模型驱动的NPC系统,旨在解决具身智能研究中的数据稀缺问题并提供全面的评估工具,为机器人技术的进步搭建重要桥梁。https://arxiv.org/pdf/2407.10943
203 60
|
6月前
|
自然语言处理 机器人 Go
【飞书ChatGPT机器人】飞书接入ChatGPT,打造智能问答助手
【飞书ChatGPT机器人】飞书接入ChatGPT,打造智能问答助手
338 0
|
3月前
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
78 0
|
3月前
|
机器人 TensorFlow 算法框架/工具
智能聊天机器人
【8月更文挑战第1天】智能聊天机器人。
97 2