基于瑞丽多径信道的无线通信信道均衡算法matlab仿真,对比MMSE,ZF-DFE,MMSE-DFE

简介: 基于瑞丽多径信道的无线通信信道均衡算法matlab仿真,对比MMSE,ZF-DFE,MMSE-DFE

1.算法仿真效果
matlab2022a仿真结果如下:

cd13cb650cf8ad8d7c38fad234d0c98c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
信道均衡(Channel equalization)是指为了提高衰落信道中的通信系统的传输性能而采取的一种抗衰落措施。它主要是为了消除或者是减弱宽带通信时的多径时延带来的码间串扰(ISI)问题。其机理是对信道或整个传输系统特性进行补偿,针对信道恒参或变参特性,数据速率大小不同,均衡有多种结构方式。信道均衡技术(Channel equalization)是指为了提高衰落信道中的通信系统的传输性能而采取的一种抗衰落措施。它主要是为了消除或者是减弱宽带通信时的多径时延带来的码间串扰(ISI)问题。

   信号经由发射机发射,射频信号在空间中传播(即无线信道中传播),经散射、折射、反射到达接收机后形成多径传输,多径传输信号会在信号接收机处叠加,接收信号与原信号相比其幅值与相位均会发生变化,其接收机信号强度和相位可用符合统计学分布的信道模型进行描述,目前常用的信道模型主要包括:瑞丽信道模型、莱斯信道模型,两者的定义如下:

1.瑞丽信道模型

   瑞丽信道模型适用于没有直达波到达接收机的情况,也就是说,接收设备与发射设备之间不共视(视距外),适用于对流层散射等情况,该信道模型的概率分布函数符合瑞丽分布。

2.莱斯信道模型

  与瑞丽模型相反,莱斯信道适用于存在直达波到达接收机的情况,即存在一条主路径,通过主路径传输过来被接收的信号为一个稳定幅度Ak和相位φk,其余多径传输过来的信号仍如“瑞利衰落概率模型”所述。

3.ZF均衡

  ZF均衡算法是一种根据峰值失真准则推导而来的线性均衡算法。将OFDM系统接收端的频域输出方程组用矩阵表示为

Y=HX+W
其中W为加性高斯白噪声。为了得到发送端的发送信号X,最简单的实现方法是将Y乘以矩阵的 逆,即:

33f8ad662f46a74c7d672fdf97e07ff2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

      R_dfe = P_s*(U_dfe*U_dfe')+C_w;
      p_dfe = P_s^2*U_dfe*e_dfe;
      c_dfe_mmse_ff=R_dfe\p_dfe;
      c_dfe_mmse_fb = -c_dfe_mmse_ff'*U(:,1:k1);
      errors = 0;
      Symbols_dfe_mmse = zeros(Nbits,1);
      for ii_n = 0:Nbits-1
          %Decision variable
          Symbols_dfe_mmse_padded=[zeros(k1,1);Symbols_dfe_mmse]; 
          Z = c_dfe_mmse_fb*Symbols_dfe_mmse_padded(ii_n+1:ii_n+length(c_dfe_mmse_fb),:) + c_dfe_mmse_ff'*Vec_2(1+ii_n*m:L_o+ii_n*m);
          dist = abs(Constellation - Z);
          [~,hard_dec] = min(dist);
          Symbols_dfe_mmse(1+ii_n) = Constellation(hard_dec);
          if(abs(Symbols_dfe_mmse(1+ii_n)-Vec_1(1+ii_n))==2)
              errors=errors+1;
          elseif(abs(Symbols_dfe_mmse(1+ii_n)-Vec_1(1+ii_n))>2)
              errors=errors+2;
          end
      end
      BER_MMSEDFE(ik) =  BER_MMSEDFE(ik) + errors/(2*length(Vec_1));
.........................................................................
figure;
semilogy(SNRs,BER_mmse,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
semilogy(SNRs,BER_ZFDFE,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
semilogy(SNRs,BER_MMSEDFE,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
grid on
xlabel('SNR (dB)')
ylabel('BER')
legend('MMSE','ZF-DFE','MMSE-DFE');
相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
405 0
|
3月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
280 2
|
3月前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
3月前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
266 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
217 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
235 8
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
210 0
|
3月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
200 0

热门文章

最新文章