成功解决This table may be a Hive-managed ACID table, or require some other capability that Spark问题

简介: 成功解决This table may be a Hive-managed ACID table, or require some other capability that Spark问题

问题背景

最近在使用 Create table 备份表 as select * from 源表的方式进行备份数据时,发现备份表是acid表,使用spark sql读取该表的时候,出现如下异常:

they have the following capabilities: CONNECTORREAD,HIVEFULLACIDREAD,HIVEFULLACIDWRITE,HIVEMANAGESTATS,HIVECACHEINVALIDATE,CONNECTORWRITE.
This table may be a Hive-managed ACID table, or require some other capability that Spark
currently does not implement;
        at com.quantex.MainRun.main(MainRun.java:61)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:665)

解决方案

既然生成的是一个acid表,那么生成一个非acid表,是不是就可以解决这个问题了呢?

于是查询相关资料发现,在hive中是可以生成非acid表的,即在一个session中设置参数即可解决:

set hive.create.as.insert.only=false;
set hive.create.as.acid=false;
create table 备份表 as select * from 源表;
相关文章
|
6月前
|
SQL 分布式计算 Hadoop
干翻Hadoop系列文章【02】:Hadoop、Hive、Spark的区别和联系
干翻Hadoop系列文章【02】:Hadoop、Hive、Spark的区别和联系
|
6月前
|
SQL 分布式计算 数据库
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
254 0
|
1月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
37 0
|
5月前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 分布式计算 NoSQL
使用Spark高效将数据从Hive写入Redis (功能最全)
使用Spark高效将数据从Hive写入Redis (功能最全)
381 1
|
6月前
|
SQL 分布式计算 关系型数据库
使用 Spark 抽取 MySQL 数据到 Hive 时某列字段值出现异常(字段错位)
在 MySQL 的 `order_info` 表中,包含 `order_id` 等5个字段,主要存储订单信息。执行按 `create_time` 降序的查询,显示了部分结果。在 Hive 中复制此表结构时,所有字段除 `order_id` 外设为 `string` 类型,并添加了 `etl_date` 分区字段。然而,由于使用逗号作为字段分隔符,当 `address` 字段含逗号时,数据写入 Hive 出现错位,导致 `create_time` 值变为中文字符串。问题解决方法包括更换字段分隔符或使用 Hive 默认分隔符 `\u0001`。此案例提醒在建表时需谨慎选择字段分隔符。
116 6
|
6月前
|
SQL 分布式计算 Java
Spark 为什么比 Hive 快
Spark与Hive在数据处理上有显著区别。Spark以其内存计算和线程级并行提供更快的速度,但稳定性受内存限制。相比之下,Hive虽较慢,因使用MapReduce,其稳定性更高,对内存需求较小。在Shuffle方式上,Spark的内存 Shuffle 比Hive的磁盘 Shuffle 更高效。综上,Spark在处理速度和Shuffle上占优,Hive则在稳定性和资源管理上更胜一筹。
170 0
|
6月前
|
SQL 分布式计算 Hadoop
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
182 0
|
6月前
|
SQL 存储 分布式计算
Spark与Hive的集成与互操作
Spark与Hive的集成与互操作
|
6月前
|
SQL 存储 大数据
手把手教你大数据离线综合实战 ETL+Hive+Mysql+Spark
手把手教你大数据离线综合实战 ETL+Hive+Mysql+Spark
269 0
下一篇
无影云桌面