Linux之进程间通信——system V(共享内存、消息队列、信号量等)(上)

简介: Linux之进程间通信——system V(共享内存、消息队列、信号量等)(上)

前言

本文介绍了另一种进程间通信——system V,主要介绍了共享内存,消息队列、信号量,当然消息队列了信号量并非重点,简单了解即可。


一、共享内存

1.共享内存的基本原理

共享内存:不同的进程为了进行通信看到的同一个内存块,该内存块被称为共享内存。

进程具有独立性,它的内核数据结构包括对应的代码,数据与页表都是独立的。

OS系统为了让进程间可以实现通信:1.在物理内存上申请一块内存空间 2.将申请好的内存分别与各个进程的页表之间建立映射,然后在各个进程的虚拟地址空间中将虚拟地址与页表建立映射,从而建立起物理地址与虚拟地址的联系。

如果不想继续通信,就取消进程与内存间的映射关系,释放内存。

  1. 我们将创建好的内存称为共享内存
  2. 将进程与共享内存建立映射的操作称为挂接
  3. 把取消进程与内存的映射关系这一操作称为关联
  4. 把释放内存称为释放共享内存

共享内存的建立:在物理内存当中申请共享内存空间;将申请到的共享内存嘎姐到地址空间(建立映射关系)。

共享内存的释放:共享内存与地址空间去关联(取消映射关系),释放共享内存空间(将物理内存归还系统)。

对于共享内存的理解

对比C语言中的malloc可以在物理内存中申请空间,并将开辟好的空间通过页表映射到进程地址空间当中。system V进程间通信,是专门设计的,用于IPC;共享内存是一种通信方式,所有想进行通信的进程都可以使用(OS一定可能会同时存在很多的共享内存)

2.共享内存的创建

  1. shmget:用来创建共享内存
  2. 参数认识:

shmflg:通常有两个选项:IPC_CREATIPC_EXCL

  • IPC_CREAT:共享内存不存在,则创建,如果存在,则获取
  • IPC_EXCL:无法单独使用,只能配合IPC_CREAT使用。IPC_CREAT | IPC_EXCL如果不存在就创建,如果存在就报错

size:共享内存的大小

key:共享内存的唯一性标识,保证进程看到同一份共享内存。如何形成key?用ftok

ftok:形成key

ftok是通过存在的路径名pathname以及设置的标识符proj_id来形成一个key值,通过shmget创建共享内存时,key值会被填充到维护共享内存的数据结构当中。

key_t getkey()
  {
          key_t = ftok(PATHNAME, PROJ_JD);
          if(k < 0)
          {
                  cout<<"error:"<<errno<<":"<<strerror(errno)<<endl;
                  exit(1);
          }
          return k;
  }

为什么要存在key?

OS中一定存在很多的共享内存,而共享内存本质就是在内存中申请一块空间,这个key就是用来唯一标识共享内存的。

OS申请的共享内存,那么它一定会对共享内存进行管理(先描述,再组织),共享内存 = 物理内存块 + 共享内存的相关属性。

如果两个进程为了进行通信使用共享内存,那么一定要让两干进程看到同一个key的共享内存,那么key值存在哪里呢?key作为共享内存的唯一标识,应该存在共享内存的相关属性集合。描述共享内存的数据结构的字段struct shm中存着key。

共享内存数据结构的第一个成员是shm_permshm_perm是一个ipc_perm类型的结构体变量,每个共享内存的key值都存储在shm_perm中。

// ipc_perm结构体如下
struct ipc_perm{
  key_t __key;
  uid_t uid;
  gid_t gid;
  uid_t cuid;
  gid_t cgid;
  unsigned short mode;
  unsigned short __seq;
};

3.共享内存的控制

shmctl:控制共享内存

参数

shmid控制共享内存的标识符;

cmd控制种类;

buf控制共享内存的数据结构(一般设置为NULL)。

返回值

返回0表示成功,返回-1表示失败。

共享内存的内核数据结构

struct shmid_ds{
  struct ipc_perm shm_perm;
  size_t shm_segsz;
  time_t shm_atime;
  time_t shm_dtime;
  time_t shm_ctime;
  pid_t shm_cpod;
  pid_t shm_lpod;
  shmatt_t shm_nattch;
  //…

4.共享内存的关联

shmat:关联共享内存

参数

shmaddr:指定虚拟地址(一般设置为nullptr);

shmflg:读取权限(一般设置为0)。

5.共享内存的去关联

shmdt:去关联

6.查看IPC资源

对于管道,进程退出,文件描述符会自动被释放(文件描述符的生命周期是随进程的),但是对于共享内存来说不是这样的,共享内存的生命周期是随OS的,而不是随进程,这是所有system V进程间的共性。

7.查看共享内存

ipcs -m

8.删除共享内存

ipcsrm -m (shmid)二、实现进程间通信(代码)

文件comm.hpp


相关文章
|
2月前
|
安全 Linux Shell
Linux上执行内存中的脚本和程序
【9月更文挑战第3天】在 Linux 系统中,可以通过多种方式执行内存中的脚本和程序:一是使用 `eval` 命令直接执行内存中的脚本内容;二是利用管道将脚本内容传递给 `bash` 解释器执行;三是将编译好的程序复制到 `/dev/shm` 并执行。这些方法虽便捷,但也需谨慎操作以避免安全风险。
180 6
|
14天前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
20天前
|
存储 缓存 监控
|
1月前
|
存储 缓存 监控
Linux中内存和性能问题
【10月更文挑战第5天】
39 4
|
1月前
|
算法 Linux
Linux中内存问题
【10月更文挑战第6天】
46 2
|
17天前
|
缓存 算法 Linux
Linux内核中的内存管理机制深度剖析####
【10月更文挑战第28天】 本文深入探讨了Linux操作系统的心脏——内核,聚焦其内存管理机制的奥秘。不同于传统摘要的概述方式,本文将以一次虚拟的内存分配请求为引子,逐步揭开Linux如何高效、安全地管理着从微小嵌入式设备到庞大数据中心数以千计程序的内存需求。通过这段旅程,读者将直观感受到Linux内存管理的精妙设计与强大能力,以及它是如何在复杂多变的环境中保持系统稳定与性能优化的。 ####
24 0
|
1月前
|
存储 缓存 固态存储
|
1月前
|
Linux C++
Linux c/c++文件虚拟内存映射
这篇文章介绍了在Linux环境下,如何使用虚拟内存映射技术来提高文件读写的速度,并通过C/C++代码示例展示了文件映射的整个流程。
47 0
|
2月前
|
Linux C语言
C语言 多进程编程(七)信号量
本文档详细介绍了进程间通信中的信号量机制。首先解释了资源竞争、临界资源和临界区的概念,并重点阐述了信号量如何解决这些问题。信号量作为一种协调共享资源访问的机制,包括互斥和同步两方面。文档还详细描述了无名信号量的初始化、等待、释放及销毁等操作,并提供了相应的 C 语言示例代码。此外,还介绍了如何创建信号量集合、初始化信号量以及信号量的操作方法。最后,通过实际示例展示了信号量在进程互斥和同步中的应用,包括如何使用信号量避免资源竞争,并实现了父子进程间的同步输出。附带的 `sem.h` 和 `sem.c` 文件提供了信号量操作的具体实现。
|
3月前
|
Linux 调度
深入理解Linux虚拟内存管理(七)(下)
深入理解Linux虚拟内存管理(七)
70 4