[2.0快速体验] Apache Doris 2.0 冷热分离快速体验

本文涉及的产品
对象存储 OSS,标准 - 本地冗余存储 20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
对象存储 OSS,内容安全 1000 次 1年
简介: 未来一个很大的使用场景是类似于es日志存储,日志场景下数据会按照日期来切割数据,很多数据是冷数据,查询很少,需要降低这类数据的存储成本。从节约存储成本角度考虑各云厂商普通云盘的价格都比对象存储贵在doris集群实际线上使用中,普通云盘的利用率无法达到100%云盘不是按需付费,而对象存储可以做到按需付费基于普通云盘做高可用,需要实现多副本,某副本异常要做副本迁移。而将数据放到对象存储上则不存在此类问题,因为对象存储是共享的。

概述

对于任何一种数据库类软件来说,无论其基于传统数据库模型还是基于分布式结构,作为核心的永远是数据本身。而数据的生命周期,则体现在CRUD操作(创建、查询、更新、删除)上。任何一条数据从其生成的时刻开始,数据价值随着时间的推移而逐渐降低,直至成为无用数据,最终删除。

作为使用数据的主体用户,对于各种数据的需求程度是不同的,人们往往对重要的数据有更高效、稳定的访问需求;而对于不重要的数据则没有这么高的要求,而前者存储的代价往往是远高于后者的。用户在满足了自身对于数据使用要求的情况下,自然会开始考虑数据存储成本等方面的问题,对于那些很少访问甚至基本不访问的数据,使用成本更低的存储方式将是一种更好的选择。

针对这样的使用场景,我们将数据根据用户需求分为“热数据”与“冷数据”。顾名思义,“热数据”代表着用户对其有着更频繁的访问需求,“冷数据”则很少访问。一般数据在新创建的时候往往都是“热数据”,而随着时间的推移逐步变成“冷数据”。

对于热数据,其访问的频率很高,且往往是用户非常关心的数据,其实时性要求一般都很高,并且读写的频率也会更高,这正是DORIS本地存储重点解决的问题。

对于冷数据,其数据量往往远大于热数据,并且很少被访问,使用本地存储的代价就很高,这时使用存算分离模型,将其存储到代价更低的存储载体将大大降低成本。

未来一个很大的使用场景是类似于es日志存储,日志场景下数据会按照日期来切割数据,很多数据是冷数据,查询很少,需要降低这类数据的存储成本。从节约存储成本角度考虑

  1. 各云厂商普通云盘的价格都比对象存储贵
  2. 在doris集群实际线上使用中,普通云盘的利用率无法达到100%
  3. 云盘不是按需付费,而对象存储可以做到按需付费
  4. 基于普通云盘做高可用,需要实现多副本,某副本异常要做副本迁移。而将数据放到对象存储上则不存在此类问题,因为对象存储是共享的。

使用体验

下面我们 Minio 为例来演示怎么使用 Doris 基于对象存储的冷热分离功能。

我是在 MacOS 上来进行安装演示的

MacOS Doris 的编译安装

编译具体可以参照官方文档:在macOS平台上编译 - Apache Doris

本地安装单节点:快速开始 - Apache Doris

如果你是 Linux 系统,可以下载官方编译好的2.0.0 alpha 版本进行快速体验:下载 - Apache Doris

curl https://doris.apache.org/download-scripts/2.0.0-alpha1/download_x64_tsinghua.sh | sh

Minio 安装

本文是brew方式,Mac需安装brew支持,本文不再赘述, Linux 系统下的 Minio 网上很多教程,请自行百度

brew install minio/stable/minio

然后可以看到安装成功的信息

Command-line Access: https://docs.min.io/docs/minio-client-quickstart-guide
Object API (Amazon S3 compatible):
   Go:         https://docs.min.io/docs/golang-client-quickstart-guide
   Java:       https://docs.min.io/docs/java-client-quickstart-guide
   Python:     https://docs.min.io/docs/python-client-quickstart-guide
   JavaScript: https://docs.min.io/docs/javascript-client-quickstart-guide
   .NET:       https://docs.min.io/docs/dotnet-client-quickstart-guide
Talk to the community: https://slack.min.io
==> Get started:
NAME:
  minio server - start object storage server
USAGE:
  minio server [FLAGS] DIR1 [DIR2..]
  minio server [FLAGS] DIR{1...64}
  minio server [FLAGS] DIR{1...64} DIR{65...128}
DIR:
  DIR points to a directory on a filesystem. When you want to combine
  multiple drives into a single large system, pass one directory per
  filesystem separated by space. You may also use a '...' convention
  to abbreviate the directory arguments. Remote directories in a
  distributed setup are encoded as HTTP(s) URIs.
FLAGS:
  --address value              bind to a specific ADDRESS:PORT, ADDRESS can be an IP or hostname (default: ":9000") [$MINIO_ADDRESS]
  --console-address value      bind to a specific ADDRESS:PORT for embedded Console UI, ADDRESS can be an IP or hostname [$MINIO_CONSOLE_ADDRESS]
  --ftp value                  enable and configure an FTP(Secure) server
  --sftp value                 enable and configure an SFTP server
  --certs-dir value, -S value  path to certs directory (default: "/Users/zhangfeng/.minio/certs")
  --quiet                      disable startup and info messages
  --anonymous                  hide sensitive information from logging
  --json                       output logs in JSON format
  --help, -h                   show help
EXAMPLES:
  1. Start MinIO server on "/home/shared" directory.
     $ minio server /home/shared
  2. Start single node server with 64 local drives "/mnt/data1" to "/mnt/data64".
     $ minio server /mnt/data{1...64}
  3. Start distributed MinIO server on an 32 node setup with 32 drives each, run following command on all the nodes
     $ minio server http://node{1...32}.example.com/mnt/export{1...32}
  4. Start distributed MinIO server in an expanded setup, run the following command on all the nodes
     $ minio server http://node{1...16}.example.com/mnt/export{1...32} \
            http://node{17...64}.example.com/mnt/export{1...64}
  5. Start distributed MinIO server, with FTP and SFTP servers on all interfaces via port 8021, 8022 respectively
     $ minio server http://node{1...4}.example.com/mnt/export{1...4} \
           --ftp="address=:8021" --ftp="passive-port-range=30000-40000" \
           --sftp="address=:8022" --sftp="ssh-private-key=${HOME}/.ssh/id_rsa"
   /opt/homebrew/Cellar/minio/RELEASE.2023-05-04T21-44-30Z_1: 3 files, 100.9MB, built in 3 seconds
==> Running `brew cleanup minio`...
Disable this behaviour by setting HOMEBREW_NO_INSTALL_CLEANUP.
Hide these hints with HOMEBREW_NO_ENV_HINTS (see `man brew`).


启动服务

设置 MINIO_REGION 、MINIO_ACCESS_KEY 、MINIO_SECRET_KEY

export MINIO_REGION=xian
export MINIO_ACCESS_KEY=minioadmin
export MINIO_SECRET_KEY=minioadmin

将 minio 服务放到后台运行

nohup minio server  /Users/zhangfeng/minio_data > /Users/zhangfeng/minio_data/log/minio.log 2>&1 &

然后可以看见登录界面:

登录进去创建 bucket 下面我们就可以进行Doris的冷热分离操作了

image.png


Doris 冷热分离体验

首先我们在 fe/fe.conf 里打开冷热分离这个功能,因为新的功能在第一个版本默认是关闭的,所以我们要手动打开,添加下面的内容

enable_storage_policy=true

然后重启 FE。

首先我们创建一个 Resource

创建S3 RESOURCE的时候,会进行S3远端的链接校验,以保证RESOURCE创建的正确

CREATE RESOURCE "remote_s3"
PROPERTIES
(
    "type" = "s3",
    "AWS_ENDPOINT" = "localhost:9000",
    "AWS_REGION" = "xian",
    "AWS_BUCKET" = "test",
    "AWS_ROOT_PATH" = "/test/test001",
    "AWS_ACCESS_KEY" = "minioadmin",
    "AWS_SECRET_KEY" = "minioadmin",
    "AWS_MAX_CONNECTIONS" = "50",
    "AWS_REQUEST_TIMEOUT_MS" = "3000",
    "AWS_CONNECTION_TIMEOUT_MS" = "1000"
);

然后我们创建数据迁移策略(STORAGE POLICY),用于冷热数据转换

CREATE STORAGE POLICY test_policy
PROPERTIES(
    "storage_resource" = "remote_s3",
    "cooldown_ttl" = "1h"
);
  1. cooldown_datetime:热数据转为冷数据时间,不能与cooldown_ttl同时存在。
  2. cooldown_ttl:热数据持续时间。从数据分片生成时开始计算,经过指定时间后转为冷数据。支持的格式: 1d:1天 1h:1小时 50000: 50000秒

我们后面也可以根据自己的策略来修改这个 ttl 时间,修改命令示例:

ALTER STORAGE POLICY test_policy PROPERTIES("cooldown_ttl" = "5h");


我们创建一张表,并将这个数据迁移策略应用到这个表上

CREATE TABLE IF NOT EXISTS create_table_use_created_policy 
(
    k1 BIGINT,
    k2 LARGEINT,
    v1 VARCHAR(2048)
)
UNIQUE KEY(k1)
DISTRIBUTED BY HASH (k1) BUCKETS 1
PROPERTIES(
    "storage_policy" = "test_policy",
    "replication_num" = "1"
);

我们插入几条数据:

insert into create_table_use_created_policy values (10001,100001,'11');
 insert into create_table_use_created_policy values (10002,100001,'11');
 insert into create_table_use_created_policy values (10003,100001,'11');

这里我设置了1个小时后进行冷热迁移,一个小时后我们可以在对象存储上看到数据已经迁移过来

image.png


同时我们也可以通过 Doris 提供的命令来查看

show tablets from tbl


image.png

从这个图上我们也可以看到,已经将部分数据迁移到对象存储上了

还可以通过show proc '/backends'可以查看到每个be上传到对象的大小,RemoteUsedCapacity项

image.png

我们后面也会在 show data这个命令加上RemoteDataSize这个属性,这样更方便用户查看表的对象存储使用情况


是不是非常简单方便呢,快点动手体验提来吧



相关实践学习
通义万相文本绘图与人像美化
本解决方案展示了如何利用自研的通义万相AIGC技术在Web服务中实现先进的图像生成。
相关文章
|
3月前
|
消息中间件 OLAP Kafka
Apache Doris 实时更新技术揭秘:为何在 OLAP 领域表现卓越?
Apache Doris 为何在 OLAP 领域表现卓越?凭借其主键模型、数据延迟、查询性能、并发处理、易用性等多方面特性的表现,在分析领域展现了独特的实时更新能力。
366 9
|
2月前
|
存储 自然语言处理 分布式计算
Apache Doris 3.1 正式发布:半结构化分析全面升级,湖仓一体能力再跃新高
Apache Doris 3.1 正式发布!全面升级半结构化分析,支持 VARIANT 稀疏列与模板化 Schema,提升湖仓一体能力,增强 Iceberg/Paimon 集成,优化存储引擎与查询性能,助力高效数据分析。
476 4
Apache Doris 3.1 正式发布:半结构化分析全面升级,湖仓一体能力再跃新高
|
2月前
|
SQL 人工智能 数据挖掘
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
Apache Doris 4.0 原生集成 LLM 函数,将大语言模型能力深度融入 SQL 引擎,实现文本处理智能化与数据分析一体化。通过十大函数,支持智能客服、内容分析、金融风控等场景,提升实时决策效率。采用资源池化管理,保障数据一致性,降低传输开销,毫秒级完成 AI 分析。结合缓存复用、并行执行与权限控制,兼顾性能、成本与安全,推动数据库向 AI 原生演进。
282 0
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
|
3月前
|
存储 分布式计算 Apache
湖仓一体:小米集团基于 Apache Doris + Apache Paimon 实现 6 倍性能飞跃
小米通过将 Apache Doris(数据库)与 Apache Paimon(数据湖)深度融合,不仅解决了数据湖分析的性能瓶颈,更实现了 “1+1>2” 的协同效应。在这些实践下,小米在湖仓数据分析场景下获得了可观的业务收益。
782 9
湖仓一体:小米集团基于 Apache Doris + Apache Paimon 实现 6 倍性能飞跃
|
3月前
|
人工智能 运维 监控
智能运维与数据治理:基于 Apache Doris 的 Data Agent 解决方案
本文基于 Apache Doris 数据运维治理 Agent 展开讨论,如何让 AI 成为 Doris 数据运维工程师和数据治理专家的智能助手,并在某些场景下实现对人工操作的全面替代。这种变革不仅仅是技术层面的进步,更是数据运维治理思维方式的根本性转变:从“被动响应”到“主动预防”,从“人工判断”到“智能决策”,从“孤立处理”到“协同治理”。
616 11
智能运维与数据治理:基于 Apache Doris 的 Data Agent 解决方案
|
3月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
289 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
3月前
|
SQL 存储 JSON
Apache Doris 2.1.10 版本正式发布
亲爱的社区小伙伴们,Apache Doris 2.1.10 版本已正式发布。2.1.10 版本对湖仓一体、半结构化数据类型、查询优化器、执行引擎、存储管理进行了若干改进优化。欢迎大家下载使用。
232 5
|
3月前
|
人工智能 自然语言处理 数据挖掘
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
在即将发布的 Apache Doris 4.0 版本中,我们正式引入了一系列 LLM 函数,将前沿的 AI 能力与日常的数据分析相结合,无论是精准提取文本信息,还是对评论进行情感分类,亦或生成精炼的文本摘要,皆可在数据库内部无缝完成。
272 0
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
|
4月前
|
SQL 人工智能 数据挖掘
Apache Doris + MCP:Agent 时代的实时数据分析底座
数据不再是静态的存储对象,而是流动的智能资源;数据库不再是单纯的存储系统,而是智能化的服务平台。Apache Doris 以其在 AI 方向的深度布局和技术创新,正在成为连接数据与智能的重要桥梁。
1190 0
Apache Doris + MCP:Agent 时代的实时数据分析底座
|
3月前
|
存储 人工智能 Apache
ApacheCon 2025中国开源年度报告:Apache Doris 国内第一
在 Apache 基金会管理的近 300 个顶级项目中,Doris 已经成为仅次于 Apache Airflow 的全球第二大影响力项目。
238 0

推荐镜像

更多