基于R筛选过滤低丰度物种的几种方式

简介: 基于R筛选过滤低丰度物种的几种方式

首先导入输入文件物种某水平的分类表

gene <- read.delim('../nr/Phylum.txt',row.names = 1, sep = '\t', stringsAsFactors = FALSE, check.names = FALSE)

8e100f7a3494aee6a99cc6d52f26c43.png

百分比转化

方式一

gene_precent1 <- as.data.frame(apply(gene, 2, function(x){x/sum(x)}))

方式二

gene_precent2 <-  as.data.frame(t(t(gene)/colSums(gene,na=T))*100)
colSums(gene_precent2)

37f360aa0305b5065ab1e3f58718797.png

在微生物组数据分析中,样品分析之前我们经常需要对微生物组的丰度进行筛选,

  1. 过滤在任何样本中百分比小于1%的物种

gene_filter <-data.frame(gene_precent1[apply(gene_precent1,1,max)>0.01,])
  1. 保留在任何样品中百分比大于 1%的物种

gene_filter <-data.frame(gene_precent1[apply(gene_precent1,1,min)>0.001,])
  1. 过滤样品平均相对丰度小于1%的物种

gene_filter2 <- data.frame(gene_precent1[which(apply(gene_precent1, 1, function(x){mean(x)})
                                >0.01),], check.names=F)

另一种方法

gene_filter <- gene_precent1[which(rowMeans(gene_precent1) >= 0.01), ]
  1. 只保留相对丰度总和高于 0.005 的属,换成rowSums即可

gene_filter <- gene_precent1[which(rowSums(gene_precent1) >= 0.005), ]
  1. 过滤在一半或者大于一半样品中丰度为0的物种

cutoff = .5
gene_filter <- data.frame(gene_precent1[which(apply(gene_precent1, 1, function(x){length(which
                                                                (x!= 0))/length(x)}) >= cutoff),])

提一点, 代码中x!=0其实可以换为x大于等于某个值,就代表过滤在一半或者大于一半样品中丰度大于等于多少的物种,注意变通~~~

2fcd9c2c03d8ba635c6e53aef658e41.png

另外,在有的文献中还有是过滤每组中至少一半的样品丰度丰度大于0.1%,也就是说当你有俩组每组6个样品的情况下,你得保证每组都是至少有3个样品的丰度大于0.1%。其实也很简单,我们分别在各组中去执行上述代码,最后筛选到的物种再合并一下就OK了,用到了union函数,它的功能是会整合出现在x数据框中或y数据框中的数据,同时去除了两个数据框中重复的部分。

cutoff = 0.5
gene1 <- data.frame(gene_precent1[,1:6][which(apply(gene_precent1[,1:6], 1, function(x){length(which
                                                                                             (x>=0.001))/length(x)}) > cutoff),])
gene2 <- data.frame(gene_precent1[,7:12][which(apply(gene_precent1[,7:12], 1, function(x){length(which
                                                                                               (x>=0.001))/length(x)}) > cutoff),])
gene_filter1 <- gene_precent1[union(rownames(gene1),rownames(gene2)),]

提供另一种方法过滤在一半或者大于一半样品中丰度为0的物种

gene_filter <- gene_precent1
gene_filter[gene_filter >0] <- 1
gene_filter <- gene_precent1[which(rowSums(gene) >= ncol(gene_precent1)/2), ]


目录
打赏
0
0
0
0
9
分享
相关文章
零基础也能学会!Linux下安装RStudio工具及实现远程访问的详细指南
RStudio Server 使你能够在 Linux 服务器上运行你所熟悉和喜爱的 RStudio IDE,并通过 Web 浏览器进行访问,从而将 RStudio IDE 的强大功能和工作效率带到基于服务器的集中式环境中。
【Shell 命令集合 文件管理】Linux 将多个文件的内容按列合并 paste命令使用指南
【Shell 命令集合 文件管理】Linux 将多个文件的内容按列合并 paste命令使用指南
556 0
关于解决chatGPT注册不了报错:chatGPT邮箱不支持
ChatGPT 开放了免费注册功能。然而,在用户创建过程中,一些人遇到了如下所示的提示信息:“Oops! The email you provided is not supported”,中文翻译为“糟糕,邮箱不支持”。
836 4
Linux(29) 多线程快速解压缩|删除|监视大型文件
Linux(29) 多线程快速解压缩|删除|监视大型文件
1000 1
【SPSS】两独立样本的曼-惠特尼U检验详细操作教程(附案例实战)
【SPSS】两独立样本的曼-惠特尼U检验详细操作教程(附案例实战)
2626 0
【SPSS】单样本T检验分析详细操作教程(附案例实战)
【SPSS】单样本T检验分析详细操作教程(附案例实战)
3003 0
OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)
OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)
732 0
利用ggcor包绘制相关性组合图及环状热图
ggcor包最初是因为能快速实现19年Science一组合相关性图(上图所示)变得流行起来,除此该包对热图、热图等等的可视化都是很方便快捷的,除了之前介绍过的几种相关性图几种方式,此包也是个不错的选择,且具独特的风格(特别是组合相关性图、环形热图)。但是不知道因为何种原因此包在Github上消失了....,到作者(厚缊)个人博客上瞅了瞅发现关于包的参数介绍示例等也都没有了,在评论区里看到作者回答项目已不再提供任何代码和任何资料,需要的可以去国内的gitee和国外的github搜索看看有没有别人存的代码。
954 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问