R可视化学习(7) -- 气泡图

简介: 气泡图

气泡图


R包准备

# R包准备
library(ggplot2)
library(dplyr)
# 
library(gapminder)

数据预处理

我们用到gapminder包中的gapminder数据集,该数据集储存了关于各国预期寿命、人均GDP和人口的数据。先看下数据结构

> head(gapminder,5)
# A tibble: 5 x 6
  country     continent  year lifeExp      pop gdpPercap
  <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
1 Afghanistan Asia       1952    28.8  8425333      779.
2 Afghanistan Asia       1957    30.3  9240934      821.
3 Afghanistan Asia       1962    32.0 10267083      853.
4 Afghanistan Asia       1967    34.0 11537966      836.
5 Afghanistan Asia       1972    36.1 13079460      740.
# 只选取2007年的数据
data <- gapminder %>% filter(year=="2007") %>% dplyr::select(-year)

基础气泡图

# geom_point()函数
ggplot(data, aes(x=gdpPercap, y=lifeExp, size = pop)) +geom_point(alpha=0.7)

16d231fc451e39f6b3db409e2a7ab3b.png

控制气泡大小

通过scale_size()函数中range参数设置最小和最大气泡的范围,且通过name参数可以自定义图例的名字

注意:圆圈经常重叠。为了避免在图表顶部出现大圆圈,您必须首先重新排序您的数据集。代码如下:

data %>%
  arrange(desc(pop)) %>% # 按pop列降序
  mutate(country = factor(country, country)) %>% #设置为因子格式 
  ggplot(aes(x=gdpPercap, y=lifeExp, size = pop)) +
  geom_point(alpha=0.5) +
  scale_size_area(range = c(.1, 24), name="Population (M)")

另外将数值变量映射到圆的大小的还有scale_radiusscale_size函数,可以?scale_radius自行了解。

b3739ad4987b02d81297b74b578772c.png

映射分组颜色

# 输出分组颜色
data %>%
  arrange(desc(pop)) %>%
  mutate(country = factor(country, country)) %>%
  ggplot(aes(x=gdpPercap, y=lifeExp, size=pop, color=continent)) +
    geom_point(alpha=0.5) +
    scale_size(range = c(.1, 24), name="Population (M)")

0ab3d9a9df01d0d829f4940c48fe460.png

进一步美化

data %>%
  arrange(desc(pop)) %>%
  mutate(country = factor(country, country)) %>%
  ggplot(aes(x=gdpPercap, y=lifeExp, size=pop, fill=continent)) +
    geom_point(alpha=0.5, shape=21, color="black") +
    scale_size(range = c(.1, 24), name="Population (M)") +
    scale_fill_viridis(discrete=TRUE, guide=FALSE, option="A") +
    theme_ipsum() +
    theme(legend.position="bottom") +
    ylab("Life Expectancy") +
    xlab("Gdp per Capita") +
    theme(legend.position = "none")

f7697ca8e22f3334daccb8c4019f907.png

交互式气泡图


绘制交互式图形需要用到plotly包,我们还是利用上面的数据集来进行绘制。

R包准备

# 加载
library(ggplot2)
library(dplyr)
library(plotly)
library(viridis)
library(hrbrthemes) 
# 还是利用上面数据集
library(gapminder)
data <- gapminder %>% filter(year=="2007") %>% dplyr::select(-year)

数据预处理

利用dplyr包来管道操作清洗数据,

newdata <- data %>%
  mutate(gdpPercap=round(gdpPercap,0)) %>% # 四舍五入取整
  mutate(pop=round(pop/1000000,2)) %>% # 保留俩位小数
  mutate(lifeExp=round(lifeExp,1)) %>% # 保留俩位小数
  # Reorder countries to having big bubbles on top
  arrange(desc(pop)) %>%
  mutate(country = factor(country, country)) %>%
  # prepare text for tooltip
  mutate(text = paste("Country: ", country, "\nPopulation (M): ", pop, "\nLife Expectancy: ", lifeExp, "\nGdp per capita: ", gdpPercap, sep=""))  #增加每个气泡标签

绘制图形

plot <- ggplot(newdata, aes(x=gdpPercap, y=lifeExp, size = pop, color = continent, text=text)) +
  geom_point(alpha=0.7) +
  scale_size(range = c(1.4, 19), name="Population (M)") +
  scale_color_viridis(discrete=TRUE, guide=FALSE) +
  theme_ipsum() +
  theme(legend.position="none")
  pp

976834644a5c9dfb4803942cb14af8b.png

保存图形

# 1. 先将ggplot图形转换为交互式图形
pp <- ggplotly(plot, tooltip="text")
pp
# 利用saveWidget函数保存交互式图形
library(htmlwidgets)
saveWidget(pp, file=  "./ggplotlyBubblechart.html")

1e4d6e0584177297a8aab35b8125dec.png

打开我们保存的html文件,可以看道鼠标停留在每个气泡上就会显示出我们添加的标签内容了,而且通过右上角的按钮可以进行拍照保存png格式图形、调整交互图形大小等功能。

富集分析气泡图


气泡图的本质就是散点图,通过数据集中的离散/连续变量等去映射气泡大小颜色产生各种气泡图,懂得了这个道理,我们再来动手绘制下转录组中常见的富集气泡图练习一下吧~~

准备数据

40ef169add2612ed26d6982155ade82.png

  • 第一列:pathway名称
  • 第二列:富集基因比例
  • 第三列:Qvalue
  • 第四列:基因数量

绘制图形

pathway <- read.delim('KEGG_pathway.txt',check.names = FALSE,header = T,sep = '\t')
p <- ggplot(pathway,aes(GeneRatio,Description))+geom_point(aes(size = Count,color = -1*log10(qvalue)))+
  scale_color_gradient(low = "green",high = 'red')+
  scale_size(range = c(1.4, 19), name="Gene")+
  labs(color = expression(-log[10](qvalue)),size = 'Gene',
       x = 'GeneRatio',
       y = 'Pathway')+
  theme(panel.grid = element_blank(), panel.background = element_rect(fill = 'transparent', color = 'black'),legend.key = element_blank())
p

e37adfa55c202a7af07aa75eed6cb6c.png

分组情况

当我们有多样品时候,也可以添加一列样品信息,然后将图中的横坐标改变为每个样品进行绘图

pathway <- pathway %>% mutate(type = c(rep('D',15),rep('H',16))) # 添加一列样品类型
# 绘制图形
p <- ggplot(pathway,aes(type,Description))+geom_point(aes(size = Count,color = -1*log10(qvalue)))+
  scale_color_gradient(low = "green",high = 'red')+
  scale_size(range = c(1.4, 19), name="Gene")+
  labs(color = expression(-log[10](qvalue)),size = 'Gene',
       x = 'Type',
       y = 'Pathway')+
  theme(panel.grid = element_blank(), panel.background = element_rect(fill = 'transparent', color = 'black'),legend.key = element_blank())
p

9447c8df376a7e1e6154d8c01545975.png

相关文章
|
6月前
如何绘制PAD图和N-S图(详细步骤)
如何绘制PAD图和N-S图(详细步骤)
445 0
|
6月前
|
数据可视化
Tableau可视化设计案例-03基本表、树形图、气泡图、词云
Tableau可视化设计案例-03基本表、树形图、气泡图、词云
|
数据可视化
R可视化学习(5) -- 脊线图
Ridgeline 图(脊线图),(有时称为Joyplot)可以同时显示几个组的数值分布情况,分布可以使用直方图或密度图来表示,它们都与相同的水平尺度对齐,并略有重叠。常常被用来可视化随时间或空间变化的多个分布/直方图变化。
295 0
R可视化学习(5) -- 脊线图
Echarts实战案例代码(9):图表纹理填充的解决方案(柱图为例)
Echarts实战案例代码(9):图表纹理填充的解决方案(柱图为例)
1495 0
|
数据采集 数据可视化 算法
数据分析可视化常用图介绍以及相关代码实现(箱型图、Q-Q图、Kde图、线性回归图、热力图)
数据分析可视化常用图介绍以及相关代码实现(箱型图、Q-Q图、Kde图、线性回归图、热力图)
|
数据可视化 数据处理
R可视化学习(4) -- 棒棒糖图
棒棒糖图其实类似于柱状图加散点图的效果,因为他的形状就是由俩部分组成(点+线条),因此在ggplot中,我们只要通过geom_point()函数绘制"糖"的那一部分,geom_segment()函数绘制“棒棒”那一部分,就可轻松绘制出这种图形
195 0
|
移动开发 数据可视化 HTML5
R可视化学习—词云图
词云。又称文字云。“词云”就是通过形成“关键词云层”或“关键词渲染”,对网络文本中出现频率较高的“关键词”的视觉上的突出,它会过滤掉大量的文本信息,使浏览网页者只要一眼扫过文本就可以领略文本的主旨。
162 0
|
数据可视化 Go 数据库
DiVenn一款用于比较基因列表的交互式Venn图绘制工具
Divenn一种基于网络的基于Web的工具 Divenn 可以将来自多个RNA-seq实验中的基因列表进行比较,并显示每个基因(集)的调控水平和整合到Kegg pathway和GO term的数据信息。我们通过该工具更加方便的了解重叠基因与其相关的pathway或Go terms之间的表达模式,十分有趣。
255 0
|
数据可视化
R可视化学习-- (8) 环形柱状图
柱状图可谓是论文最常见的图表了,但有时候这种笔直排列一排的柱状图用腻了, 换种呈现方式(比如拐个弯)也可换个心情嘛,今天就先来介绍俩种构建环形柱状图的方法,分别基于ggplot2和其他的R包来绘制。
278 0
图表解析系列之漏斗图
漏斗图适用于业务流程比较规范、周期长、环节多的单流程单向分析,通过漏斗各环节业务数据的比较能够直观地发现和说明问题所在的环节,进而做出决策。