优化算法-整数规与多目标规划

简介: 优化算法-整数规与多目标规划

优化算法-整数规与多目标规划

整数规划

概念

全部变量限制为整数的规划问题,称为纯整数规划;
部分变量限制为整数的规划问题,称为混合整数规划;
变量只取0或1的规划问题,称为0-1整数规划。

整数规划问题,建议使用Lingo软件求解。

整数规划1.png

%{
   
   
Lingo变量界定函数实现对变量取值范围的附加限制,共4.
@bin(x)             限制x为01
@bnd((L,x,U)       限制L=<x<=U
@free(x)            取消对变量x的默认下界为0的限制,即x可以取任意实数
@gin(x)             限制x为整数
在默认情况下,LINGO规定变量是非负的,也就是说下界为0,上界为+0。
@free取消了默认的下界为0的限制,使变量也可以取负值。
@bnd用于设定一个变量的上下界,它也可以取消默认下界为0的约束。
%}

常用的整数规划问题解法有:

  1. 分枝定界法:可求纯或混合整数线性规划。
  2. 割平面法:可求纯或混合整数线性规划。
  3. 隐枚举法:用于求解0-1整数规划,有过滤法和分枝法。
  4. 匈牙利法:解决指派问题(0-1规划特殊情形)
  5. 蒙特卡罗法:求解各种类型规划。

例题

0-1规划

整数规划-_0-1规划_2.png

model:
    max = 3*x1-2*x2+5*x3;
    x1+2*x2-x3<=2;
    x1+4*x2+x3<=4;
    x1+x2<=3;
    4*x2+x3<=6;
    @ bin(x1);
    @ bin(x2);
    @ bin(x3);
end

%@bin(x)  限制x为01;

整数规划lingo2.png

整数规划

整数规划0.png
整数规划lingo1.png

model:
max = 5*x1+8*x2;
x1+x2<=6;
5*x1+9*x2<=45;
@ gin(x1);
@ gin(x2);
end

% @gin(x)   限制x为整数

蒙特卡罗法(随机取样法)

  1. 前面的方法,主要是针对线性整数规划而言,对于非线性整数规划没有通用的有效解法。
  2. 整数规划由于限制变量是整数,增加了求解难度,但整数解是有限个,所以可以采用枚举法。
  3. 当枚举个数很多时,显性枚举是不现实的,但利用蒙特卡罗随机取样法,在一定的计算量下是可以得到满意解的。
  4. 注意点 通常使用lingo处理规划问题,matlab虽然也能够解决问题,都是没有lingo效果好。
    非线性整数规划1.png
    lingo的一些概念
    lingo 生成一维矩阵.png
    ```c
    %sets集合
    sets:
    row/1..4/:b;
    col/1..5/:c1,c2,x;
    link(row,col):a;
    endsets

% row生成1x4的矩阵b,col生成1x5的矩阵c1,c2,x;
% link(A,B):VAR; %!VAR就是一个AB的矩阵;
% 生成一个row
col的矩阵 记作a

% 数据
data:
c1 = 1,1,3,4,2;
c2 = -8,-2,-3,-1,-2;
a = 1 1 1 1 1
1 2 2 1 6
2 1 6 0 0
0 0 1 1 5;
b=400,800,200,200;
enddata

%规划解答 集合

max = @sum(col:c1x^2+c2x);
@for(row(i):@sum(col(j):a(i,j)*x(j))<=b(i));
@for(col:@gin(x));
@for(col:@bnd(0,x,99));

##### 例题lingo代码
```c
model:

!集合sets;

sets:
    row/1..4/:b;
    col/1..5/:c1,c2,x;
    link(row,col):a;
endsets

!数据源data;


data:
c1 = 1,1,3,4,2;
c2 = -8,-2,-3,-1,-2;
a = 1 1 1 1 1
    1 2 2 1 6
    2 1 6 0 0
    0 0 1 1 5;
b=400,800,200,200;
enddata

max  = @sum(col:c1*x^2+c2*x);
@for(row(i):@sum(col(j):a(i,j)*x(j))<=b(i));
@for(col:@gin(x));
@for(col:@bnd(0,x,99));

end


!@sum(setname:expression_list) 其中 setname 是要遍历的集合  expression_list是表达(完成函数表达式的编写) 有且仅有一个 sum进行求和操作
max  = @sum(col:c1*x^2+c2*x)  %目标函数
@for(row(i):@sum(col(j):a(i,j)*x(j))<=b(i))  %Ax<=b的约束条件   
!@for(setname:expression_list)  for循环
@for(col:@gin(x))  %对于col集合的元素进行循环操作,@gin(x) 元素都是整数
@for(col:@bnd(0,x,99))  %对于col集合的元素进行循环操作  bnd(low,x,up)限制范围
;

非线性整数规划lingo.png

多目标规划

目录
相关文章
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
22天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
21天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
22天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
22天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
19 1
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
23天前
|
数据采集 缓存 算法
算法优化的常见策略有哪些
【10月更文挑战第20天】算法优化的常见策略有哪些
|
23天前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
23天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
17 0