Java数据结构与算法分析(七)二叉树

简介: 二叉树是一棵特殊的树,其结构简单但很重要。二叉树的特点是每个节点最多有两棵子树,并且有左右之分。

GitHub源码分享

项目主页:https://github.com/gozhuyinglong/blog-demos
本文源码:https://github.com/gozhuyinglong/blog-demos/tree/main/java-data-structures

1. 二叉树(Binary Tree)

二叉树是一棵特殊的,其结构简单但很重要。二叉树的特点是每个节点最多有两棵子树,并且有左右之分。

  • 满二叉树
    如果一棵二叉树的所有叶子节点都在最后一层,称为满二叉树。满二叉树的结点总数 = $2^n-1$ (n为层数)。如下图二叉是的层数为3,其结点总数为$2^3-1=7$
    满二叉树
  • 完全二叉树
    一棵深度为k的有n个结点的二叉树,对树中的节点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。显示下图中a和b是完全二叉树,而c不是完全二叉树(倒数第二层不连续)

完全二叉树

小结:一棵满二叉树一定是一棵完全二叉树;而一棵完全二叉树不一定是满二叉树。

2. 二叉树的五种形态

二叉树是递归定义的,其节点有左右子树之分,逻辑上二叉树有五种基本形态:

二叉树的五种形态

  • 空二叉树(图a)
  • 只有一个根节点的二叉树(图b)
  • 只有左子树(图c)
  • 只有右子树(图d)
  • 完全二叉树(图e)

3. 二叉树的遍历(前序、中序、后序)

  • 前序遍历:先输出父节点,再遍历左子树,最后遍历右子树。
  • 中序遍历:先遍历左子树,再输出父节点,最后遍历右子树。
  • 后序遍历:先遍历左子树,再遍历右子树,最后输出父节点。

小结:用输出父节点的顺序来判断是前序、中序还是后序遍历

4. 代码实现

通过Java代码实现下图中二叉树,并通过三种方式遍历该二叉树(前序、中序、后序)。

二叉树

Node类为节点类,其中element表示节点元素,left为左子节点,right为右子节点。

BinaryTree类实现二叉树的具体操作,如前序遍历、中序遍历、后序遍历。

public class BinaryTreeDemo {
   
   

    public static void main(String[] args) {
   
   

        BinaryTree tree = new BinaryTree();

        Node a = new Node("A");
        Node b = new Node("B");
        Node c = new Node("C");
        Node d = new Node("D");
        Node e = new Node("E");
        Node f = new Node("F");
        Node g = new Node("G");
        Node h = new Node("H");
        Node i = new Node("I");

        tree.setRoot(a);
        a.left = b;
        a.right = c;
        b.left = d;
        b.right = e;
        d.left = h;
        c.left = f;
        c.right = g;
        g.right = i;

        System.out.println("---------------前序遍历");
        tree.preOrder();
        System.out.println("---------------中序遍历");
        tree.inOrder();
        System.out.println("---------------后序遍历");
        tree.postOrder();

    }

    private static class BinaryTree {
   
   

        private Node root; // 根

        public void setRoot(Node root) {
   
   
            this.root = root;
        }

        /**
         * 前序遍历
         */
        public void preOrder() {
   
   
            preOrder(root, 0);
        }

        /**
         * 前序遍历
         *
         * @param node
         * @param depth 层级(用于辅助输出)
         */
        public void preOrder(Node node, int depth) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 输出当前节点
            this.print(node, depth);

            // 递归左子节点
            if (node.left != null) {
   
   
                preOrder(node.left, depth + 1);
            }

            // 递归右子节点
            if (node.right != null) {
   
   
                preOrder(node.right, depth + 1);
            }

        }

        /**
         * 中序遍历
         */
        public void inOrder() {
   
   
            inOrder(root, 0);
        }

        /**
         * 中序遍历
         *
         * @param node
         * @param depth 层级(用于辅助输出)
         */
        public void inOrder(Node node, int depth) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 递归左子节点
            if (node.left != null) {
   
   
                inOrder(node.left, depth + 1);
            }

            // 输出当前节点
            this.print(node, depth);

            // 递归右子节点
            if (node.right != null) {
   
   
                inOrder(node.right, depth + 1);
            }

        }

        /**
         * 后序遍历
         */
        public void postOrder() {
   
   
            postOrder(root, 0);
        }

        /**
         * 后序遍历
         *
         * @param node
         * @param depth 层级(用于辅助输出)
         */
        public void postOrder(Node node, int depth) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 递归左子节点
            if (node.left != null) {
   
   
                postOrder(node.left, depth + 1);
            }

            // 递归右子节点
            if (node.right != null) {
   
   
                postOrder(node.right, depth + 1);
            }

            // 输出当前节点
            this.print(node, depth);

        }

        /**
         * 按照层级输出节点元素
         *
         * @param node
         * @param depth
         */
        private void print(Node node, int depth) {
   
   
            StringBuilder t = new StringBuilder();
            for (int i = 0; i < depth; i++) {
   
   
                t.append("\t");
            }
            System.out.printf("%s%s\n", t.toString(), node.element);
        }
    }

    private static class Node {
   
   
        private final Object element; // 节点元素
        private Node left; // 左子节点
        private Node right; // 右子节点

        public Node(Object element) {
   
   
            this.element = element;
        }
    }
}

输出结果:

---------------前序遍历
A
    B
        D
            H
        E
    C
        F
        G
            I
---------------中序遍历
            H
        D
    B
        E
A
        F
    C
        G
            I
---------------后序遍历
            H
        D
        E
    B
        F
            I
        G
    C
A
相关文章
|
6天前
|
Java
java数据结构,双向链表的实现
文章介绍了双向链表的实现,包括数据结构定义、插入和删除操作的代码实现,以及双向链表的其他操作方法,并提供了完整的Java代码实现。
java数据结构,双向链表的实现
|
6天前
|
存储 Java
java数据结构,线性表链式存储(单链表)的实现
文章讲解了单链表的基本概念和Java实现,包括头指针、尾节点和节点结构。提供了实现代码,包括数据结构、接口定义和具体实现类。通过测试代码演示了单链表的基本操作,如添加、删除、更新和查找元素,并总结了操作的时间复杂度。
java数据结构,线性表链式存储(单链表)的实现
|
1天前
|
存储 安全 Java
Java 数据结构类型总结
在 Java 中,常用的数据结构包括基础数据结构(如数组和字符串)、集合框架(如 Set、List 和 Map 接口的多种实现)、特殊数据结构(如栈、队列和双端队列)、链表(单链表、双链表和循环链表)以及图和树等。这些数据结构各有特点和适用场景,选择时需考虑性能、内存和操作需求。集合框架提供了丰富的接口和类,便于处理对象集合。
|
27天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
42 13
【数据结构】二叉树全攻略,从实现到应用详解
|
24天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
24天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
24天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
6天前
|
存储 Java
java数据结构,线性表顺序存储(数组)的实现
文章介绍了Java中线性表顺序存储(数组)的实现。线性表是数据结构的一种,它使用数组来实现。文章详细描述了线性表的基本操作,如增加、查找、删除、修改元素,以及其他操作如遍历、清空、求长度等。同时,提供了完整的Java代码实现,包括MyList接口和MyLinearList实现类。通过main函数的测试代码,展示了如何使用这些方法操作线性表。
|
2月前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
40 2
|
2月前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
下一篇
无影云桌面