SCENIC 识别转录因子调控网络原理分享

简介: 本分分享了关于学习参考多篇 介绍SCENIC 软件分析原理的博客和文献后总结的个人关于 SCENIC 识别转录因子调控网络原理的理解,以供参考学习

生物体必须要有精确的调控网络才能发挥其作用,序列特异性 TF 通过结合在顺式作用元件 (cis-regulatory element,CRE)上的特异性位点 (motif) 来调节靶标基因的转录,进而影响生物表型和适应度景观,同时还要跟其它很多因子交互,包括其它的转录因子、共同因子等。例如 40% 的肿瘤变异基因通过影响TF影响发病机制,一些著名的肿瘤基因如MYC, E2F, 和NF-κB都是转录因子。

人类基因组包含了 1800个 序列特异性的TF,每一个TF可以调节数百个靶标基因。某个TF和它所调控的所有靶标基因称为一个调节子( Regulon )。

SCENIC 的转录因子分析

SCENIC 的转录因子分析内容主要可分为两部分,建立 RegulonRegulon活性分析

生成由转录因子主导的基因调控网络(gene regulation network,GRNs) $\rightarrow$ 过滤网络内的假阳性靶点 $\rightarrow$ Regulon活性分析

1、共表达识别TF基因调控网络(GENIE3)

SCENIE 基于GRNBoost(由于R语言中好像没有GRNBoost算法框架,所以R版本的SCENIC使用了随机森林分类器,本质都是集成决策树模型),以 TF转录因子在样本的表达建立分类模型,从而搜索与 TF基因 协同变化的基因来确定潜在靶标基因(转录因子的潜在共表达网络)。每个网络包含一个转录因子及其系列潜在靶基因,纯粹基于共表达分析。…. 这也是SCENIC与WGCNA生成共表达网络时的差异(前者是分类,后者是聚类)。

GENIE 推断共表达这一步,可以事先通过降采样抽取少量细胞来推断 GRNs,后面在Regulon活性分析时纳入全组织细胞。

2、 构建Regulon (RcisTarget )

GENIE3 只是基于基因与TF的共表达推断建立了一个粗糙的调控网络,因此每个GRNs里面肯定存在假阳性的靶基因(即虽然是同该网络下的TF具有共表达趋势,但其实并不是受到了该TF调控的结果),对应构建一个尽量可靠的TF调控网络,这些靶点是有必要被过滤掉的。RcisTarget 基序富集分析方法基于 ENCODE 项目组的 motif数据库 ,该数据库记录了每个基因上游序列与 motif 的结合能,从而能够为每个TF-GRNs 执行 motif 富集分析,以过滤掉每个网络内缺乏 当前TF的直接motif支持 的假阳性靶标得到每个TF和其更可靠的靶标基因组成,称为 Regulon

2.1 RcisTarget 框架下的 Motif 富集原理



2.2 RcisTarget 纯化靶标基因策略

  • 对于一个 TF1 的所有潜在靶标基因集(s),执行 RcisTarget 富集 motifs ;
  • 对这些TF1靶标基因集合富集的 motifs 参考注释表,过滤出是TF1直接结合的 motifs ;
  • 使用 GSEA 的排列富集策略,保留每个 motif 中对富集得分贡献最大的基因成员与TF1 组成最终的Regulon。

参考官网该步骤的解释 createRegulons

3、 Regulon 活性评分-AUCell

AUCell 分析内容是对每个 Regulon 在各个细胞的活性进行评分。参考 GSVA 算法基于基因表达水平的排列策略。
我个人理解这个AUC应该是和motif富集的AUC是同个概念的,即计算了每个细胞里排列前5%的基因里 Regulon的召回率。
AUCell:计算单细胞转录组的每个细胞中特定基因集的活性程度

---


原理类:
iRegulon:从基因列表到调控网络
用iRegulon进行主转录因子的预测
RcisTarget包基因集的转录因子富集分析
单细胞SCENIC分析原理和流程
GSA、GSEA、ssGSEA、GSVA的算法原理及它们的联系与区别
经验累积分布函数

教程类:
官方SCENIC (aertslab.org)
SCENIC软件配套数据库_database
SCENIC单细胞转录因子分析
【单细胞测序21】scenic转录因子应用全解析和代码讲解-欧易生物_哔哩哔哩_bilibili

目录
相关文章
|
2月前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
76 3
|
3月前
|
并行计算 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基本概念、技术原理及其潜在应用。通过对量子纠缠、量子叠加和量子隐形传态等核心概念的解释,文章展示了量子互联网如何利用量子力学特性来实现超高速、超高安全性的通信。此外,还讨论了量子互联网在金融、医疗、国防等领域的应用前景,以及当前面临的技术挑战和未来的发展方向。
97 2
|
19小时前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
3天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
25 1
|
19小时前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密
|
19小时前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
19小时前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
19小时前
|
XML JSON 网络协议
【网络原理】——拥塞控制,延时/捎带应答,面向字节流,异常情况
拥塞控制,延时应答,捎带应答,面向字节流(粘包问题),异常情况(心跳包)
|
20小时前
|
网络协议 算法 Java
【JavaEE】——初始网络原理
局域网,广域网,局域网连接方式,交换机,集线器,路由器,网络通信,五元组(源IP,源端口,目的IP,目的端口,协议),协议分层,TCP/IP五层网络协议,封装和分用,交换机和路由器的封装和分用
|
1月前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
85 3