学习笔记: 机器学习经典算法-kNN(k近邻算法)

简介: 机器学习经典算法-个人笔记和学习心得分享

算法特点
背后思想简单,应用数学原理简单,效果好,而且可以说是在诸多ML算法中独有的不需要训练模型的算法。

基本过程:对于判断特征空间中的一个样本点的归类,通过在该样本点周围搜索$k$个与其距离最近的邻居,然后根据这$k$个邻居所属类别占比来来判断目标样本点的最可能类别。


一、分类kNN算法的基本过程(python)

①数据集准备

import matplotlib.pyplot as plt
import numpy as np
Point_set = np.concatenate([np.random.normal(1,1,10),np.random.normal(2.5,1,10)]).reshape(10,2) ### 样本特征集
Point_class = np.array([0,0,0,0,0,1,1,1,1,1])  ### 样本标签集

plt.scatter(Point_set[Point_class == 0,0],Point_set[Point_class == 0,1],color = "g")
plt.scatter(Point_set[Point_class == 1,0],Point_set[Point_class == 1,1],color = "r")
plt.show()

②算法过程

### 测试点
x = np.array([1.25,1.5])

from math import sqrt
distances = [ sqrt(np.sum(p - x)**2) for p in Point_set ] ### 求取特征空间上已有点集与目标点的距离
top_k = Point_class[np.argsort(distances)[:3]] ## 排序提取离目标点最近的3个点

from collections import Counter
votes = Counter(top_k)  ## 统计离目标点最近的3个点的类别信息(类似R中的tabble()函数),该过程叫做投票
votes.most_common(1)[0][0] ### 获取这3个点最多来源的类别,从而完成 kNN过程 得出基于3个最近邻居类别判断的目标点的类别信息

③使用scikit-learn中的kNN

from sklearn.neighbors import KNeighborsClassifier
kNN_classfier = KNeighborsClassifier(n_neighbors=3) ###  sklearn 框架中的算法函数以面向对象的方式进行包装,调用的时候需要初始化实例
kNN_classfier.fit(Point_set,Point_class) ### fit模型,虽然kNN算法本身没有创建模型的过程,在sklearn中为了与其它算法统一,也引入了fit过程,该过程可以认为训练集就是模型本身
kNN_classfier.predict(x.reshape(1,-1)) ### 现实使用过程中,通常是对多个数据点进行预测,所以sklean默认接受2D矩阵的数据集输入,所以这里需要将1维向量进行reshape

④算法的类封装

import numpy as np
from math import sqrt
from collections import Counter

class KNNClassifier:
    def __init__(self,k):
        """初始化kNN分类器"""
        assert k >= 1, "k must be valid"
        self.k = k
        self._X_train = None
        self._Y_train = None

    def fit(self,X_train,Y_trian):
        """根据训练集X_tain和Y_train训练kNN分类器"""
        assert X_train.shape[0] == Y_train.shape[0], "the size of X_train must be equal to the size of "
        assert self.k <= X_train.shape[0], "the size of X_train must be at least k."
        self._X_train = X_train
        self._Y_train = Y_trian
        return self

    def preditc(self,X_predict):
        """给定预测数据集X_predict,返回表示X_predict 的结果向量"""
        assert self._X_train is not None and self._Y_train is not None, "must fit before predict!"
        assert X_predict.shape[1] == self._X_train.shape[1], "the feature number of X_predict must be equal to X_train"

        Y_predict = [self._predict(x) for x in X_predict]
        return np.array(Y_predict)
    def _predict(self,x):
        """给定单个待预测x,返回x的预测结果值"""
        assert x.shape[0] == self._X_train.shape[1],"the feature number of x must be equal to X_train"

        distances = [sqrt(np.sum((x - x_train)**2)) for x_train in self._X_train]
        nearest = np.argsort(distances)
        topK_y = [self._Y_train[i] for i in nearest[:self.k]]
        votes = Counter(topK_y)

        return votes.most_common(1)[0][0]

    def __repr__(self):
        return "KNN(k=%d)" % self.k ### 类实例化之后的输出信息

自己封装方法在jupyter-notebook的调用 %run path/your_script.py


二、分类kNN 算法中的超参数

超参数:运行一个机器学习之前需要指定的参数,比如运行kNN算法的时候需要指定的k就是该算法的超参数。
模型参数:算法过程中学习的参数。kNN算法没有模型参数。

寻找最佳超参数的方法:

  • 领域知识
  • 经验数值(sklearn 框架内的kNN算法中,就给出了k = 5的经验值)
  • 实验搜索

实验法搜索kNN中超参数k

import numpy as np
from sklearn import datasets

digits = datasets.load_digits() ### 载入手写数字数据集
X = digits.data
y = digits.target
### test_train_split
from sklearn.model_selection import train_test_split
Train_X,Test_X,Train_Y,Test_Y = train_test_split(X,y,test_size= 0.2,random_state=666)


### search k
from sklearn.neighbors import KNeighborsClassifier
best_score = 0.0
best_k     = -1
for k in range(1,11): ### 小范围搜索
    knn_clf = KNeighborsClassifier(n_neighbors= k)
    knn_clf.fit(Train_X,Train_Y)
    score = knn_clf.score(Test_X,Test_Y) ## 计算预测准确度(accuarcy)

    if score >= best_score :
        best_score = score
        best_k = k

print("best k =", best_k)
print("best score =",best_score)

搜索技巧说明:对于以上在小范围1~10区间对最优k的搜索上,如果本次搜索最优的k值出现在1~10区间内,那么该最优k值是可以接受的。但是如果该搜索过程得出的最优k值出现在搜索范围的边界的话,如best_k = 10,那么就有必要扩大搜索范围进一步搜索,因为通常不同的参数决定了不同的分类准确率,它们之间是一个连续变化的关系。

①kNN算法-距离权重超参数

对于普通kNN算法,其仅仅只考虑了其最近k个邻居的投票,忽略了与邻居的距离权重因素,这样会使其分类的效果偏差。因此有必要考虑上其邻居投票的距离权重(一般使用距离的倒数作为权重,距离越大权重越小)。

scikit-learn框架中实例化kNN分类器的时候可以指定weights = distance参数指定使用距离权重KNeighborsClassifier(n_neighbors= k, weights = distance )

试验搜索kNN算法中超参数k和weights的方法
### search k
from sklearn.neighbors import KNeighborsClassifier
best_score = 0.0
best_k     = -1
best_method = ""
for method in ["uniform","distance"]:
    for k in range(1,11):
    knn_clf =KNeighborsClassifier(n_neighbors= k, weights = method )
    knn_clf.fit(Train_X,Train_Y)
    score = knn_clf.score(Test_X,Test_Y)

    if score >= best_score :
        best_score = score
        best_k = k
        best_method = method


print("best k =", best_k)
print("best score =",best_score)
print("best method =",best_score)

②kNN算法-距离超参数

关于距离定义的一般形式为:
明可夫斯基距离:$(\sum_{i=1}^{n}{|X_i^{(a)} - X_i^{(b)}|^{p }})^{\frac{1}{p}}$
由明可夫斯基距离的一般形式当$p$取不同值表示了其它距离类型:
曼哈顿距离 :$(\sum_{i=1}^{n}{|X_i^{(a)} - X_i^{(b)}|})^{\frac{1}{1}}$ #描述的是空间上两个点各维度上差值的绝对值的和。

欧拉距离:$\sqrt {\sum_{i =1}^{n}{(X_i^{(a)}} - X_i^{(b)})^{2}} = (\sum_{i=1}^{n}{|X_i^{(a)} - X_i^{(b)}|^{2}})^{\frac{1}{2}}$ #描述的是空间上两个点的直线距离。

在统计学范畴,通常还会使用样本的相似性来作为距离的度量,类如

  • 向量空间的余弦相似度
  • 调整余弦相似度
  • 皮尔森相关系数
  • Jaccard相似系数

scikit-learn框架中实例化kNN分类器的时候可以指定p参数指定使用距离类型(默认p= 2使用欧氏距离):KNeighborsClassifier(n_neighbors= k, p= 2)。这p参数也是一个kNN分类器的超参数。

通过循环试验的方式搜索最优超参数的方式,称为网格搜索

scikit-learn 框架下的网格搜索(Grid Search)实现

list字典(dict)*的格式网格搜索要搜索的超参数:

### 组织需要搜索的超参数以及搜索范围为 Grid search 的输入格式
param_grid = [
    ### 搜索的第一组超参数
    {
        'weights':['uniform']
        'n_neighbors':[i for i in range(1,11)]
    },
    ### 搜索的第二组超参数
    {
        'weights':['distance']
        'n_neighbors':[i for i in range(1,11)]
        'p':[i for i in range(1,6)]
    }
]

### 初始化kNN方法
knn_clf = KNeighborsClassifier()
### 加载Grid Search
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(knn_clf,param_grid,n_jobs= 4, verbose = 2) ### verbose 参数传入整数,对应输出信息的详细程度,越大则输出越详细
### 开始Grid Search
grid_search.fit(X_Train,Y_Train)
### 搜索到的最佳超参数结果
grid_search.best_params_
### 最佳超参数的准确度评分
grid_search.best_estimator_

### 使用具有最佳超参数的分类分类器
knn_clf = grid_search.best_estimator_
knn_clf.score(X_Test,Y_Test)

三、kNN 处理回归问题

kNN主要是为了解决多分类问题。但使用kNN算法也能用来解决回归问题(思路:求取k个最近邻居的值的平均值或者加权平均值(如距离权重)来求取样例的值)

在scikit-learn 框架中对应的是KNeighborsRegressor类。


四、kNN 算法缺点

①最大的缺点是 效率低下,优化可以通过使用树结构(KD-TreeBall-Tree)。
kNN算法高度数据相关,对数据集中的outlier高度敏感,意味着如果数据集中存在错误的标签,那么预测结果也将变得不可靠。
kNN算法的预测结果不具有可解释性,也就是说无法解释为什么预测结果属于A类别这件事,从而无法基于预测结果进行总结推广来发现新的理论。
维数灾难,随着维度增加,看似相近 的两个样本点之间的距离会越来越大。该问题一般使用 降维(PCA) 进行处理。

目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
29天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
18天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
34 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
107 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
1月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理

热门文章

最新文章

下一篇
无影云桌面