m基于FPGA的AGC自适应增益控制系统verilog实现,包含testbench

简介: m基于FPGA的AGC自适应增益控制系统verilog实现,包含testbench

1.算法仿真效果
Vivado2019.2仿真结果如下:

4c96420fa9a1dd82a56305d3b5395b51_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

放大后可以看到:

0ed432bf4fb67a4f1daba49f7b53769f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
40dcaca1cb5d66c447fce9d8b8a21467_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1a80a120ad9657a4def32cd7c139585f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
数字AGC(Automatic Gain Control)是一种广泛应用于通信系统中的自动增益控制技术。它可以自动调节接收信号的增益,以使信号的强度保持在适当的范围内,从而保证接收到的信号质量。

    数字AGC广泛应用于通信系统中,如无线电通信、卫星通信、雷达系统等。在这些应用中,数字AGC可以保证接收到的信号强度始终在适当的范围内,从而保证通信的质量和可靠性。以无线电通信为例,数字AGC可以使接收机在强信号和弱信号之间自动切换,从而避免强信号引起的失真和弱信号引起的噪声。数字AGC还可以减少对电池的能量消耗,延长电池寿命。在卫星通信中,数字AGC可以使接收机在不同的天线方向之间自动切换,并根据信号的强度进行自动调节,从而保证接收到的信号质量和可靠性。在雷达系统中,数字AGC可以保证雷达接收到的回波信号强度始终在适当的范围内,从而保证雷达的探测距离和探测精度。总之,数字AGC是一种非常重要的技术,在通信系统、雷达系统等领域有着广泛的应用和发展前景。

   在文中,我们将详细介绍基于FPGA的数字AGC的原理和工作过程实现步骤。数字AGC的基本原理是在接收信号经过前端放大器之后,将信号进行采样、ADC转换、数字滤波等处理,得到信号的强度值,并将其与设定的阈值进行比较,然后根据比较结果对前端放大器的增益进行自动调节,使信号的强度保持在适当的范围内。具体来说,数字AGC的工作过程如下:
AI 代码解读

采样:接收信号经过前端放大器之后,将其进行采样,得到一系列的采样值。
ADC转换:将采样值通过ADC转换成数字信号。
数字滤波:对ADC转换后的数字信号进行数字滤波,去除高频噪声和低频漂移。
平方运算:对数字滤波后的信号进行平方运算,得到信号的功率值。
移动平均:对平方运算后的信号进行移动平均,得到信号的平均功率值。
比较:将平均功率值与设定的阈值进行比较,得到比较结果。
自动调节:根据比较结果对前端放大器的增益进行自动调节,使信号的强度保持在适当的范围内。
以上就是数字AGC的基本原理。下面我们将介绍如何在FPGA中实现数字AGC。

3.Verilog核心程序
```//signal 延迟
reg signed[11:0]dly_x[2149:1];
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
for(i=1;i<=2149;i=i+1)
dly_x[i]<=12'd0;
end
else begin
dly_x[1]<=i_x;
for(i=2;i<=2149;i=i+1)
dly_x[i]<=dly_x[i-1];
end
end
//flag 延迟
reg signed[2148:0]dly_flag;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
dly_flag<=2149'd0;
end
else begin
dly_flag<={dly_flag[2147:0],i_flag};
end
end
wire signed[11:0]w_y = dly_x[2149];
assign o_flag= dly_flag[2048];

//自动增益
wire [19 : 0] gains;
blk_agc blk_agc_u (
.clka(i_clk), // input wire clka
.rsta(i_rst), // input wire rsta
.addra(o_egy), // input wire [8 : 0] addra
.douta(gains), // output wire [19 : 0] douta
.rsta_busy() // output wire rsta_busy
);

reg signed[19:0]wgains;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
wgains <= 20'b0;
end
else begin
if(o_flag == 1'b1)
wgains <= gains;
else
wgains <= wgains;
end
end
endmodule
```

相关文章
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
92 0
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
249 74
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
342 69
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
283 26
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
259 8
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
305 11

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问