【LSTM回归预测】基于RNN-LSTM卷积神经网络实现空调功耗数据回归预测附Matlab代码

简介: 【LSTM回归预测】基于RNN-LSTM卷积神经网络实现空调功耗数据回归预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

⛄ 部分代码

function [train_data,test_data]=LSTM_data_process()

%% 数据加载并完成初始归一化

train_data_initial= [0.4413 0.4707 0.6953 0.8133 0.4379 0.4677 0.6981 0.8002 0.4517 0.4725 0.7006 0.8201;

                    0.4379 0.4677 0.6981 0.8002 0.4517 0.4725 0.7006 0.8201 0.4557 0.4790 0.7019 0.8211;

                    0.4517 0.4725 0.7006 0.8201 0.4557 0.4790 0.7019 0.8211 0.4601 0.4911 0.7101 0.8298]';

% train_data_initial=[ 0.4413 0.4707 0.6953 0.8133;

%                      0.4379 0.4677 0.6981 0.8002;

%                      0.4517 0.4725 0.7006 0.8201;

%                      0.4557 0.4790 0.7019 0.8211;

%                      0.4601 0.4811 0.7101 0.8298;

%                      0.4612 0.4845 0.7188 0.8312]';

test_data_initial=[0.4557 0.4790 0.7019 0.8211;

                  0.4612 0.4845 0.7188 0.8312;

                  0.4601 0.4811 0.7101 0.8298;

                  0.4615 0.4891 0.7201 0.8330]';


data_length=size(train_data_initial,1);            %每个样本的长度

data_num=size(train_data_initial,2);               %样本数目  


%%归一化过程

for n=1:data_num

   train_data(:,n)=train_data_initial(:,n)/sqrt(sum(train_data_initial(:,n).^2));  

end

for m=1:size(test_data_initial,2)

   test_data(:,m)=test_data_initial(:,m)/sqrt(sum(test_data_initial(:,m).^2));

end

⛄ 运行结果

⛄ 参考文献

[1] 施海昕,诸建超,严骏驰,等.基于卷积神经网络和LSTM循环神经网络的客户复购预测方法[J].高技术通讯, 2021, 31(7):10.DOI:10.3772/j.issn.1002-0470.2021.07.004.

[2] 周杨,周林立,刘磊.基于LSTM的化肥价格指数预测[J].仪表技术, 2019(4):3.DOI:CNKI:SUN:YBJI.0.2019-04-010.

[3] 赵万祥,张远进,李晓荣.基于LSTM神经网络的缺失数据随机功率谱估计[J].武汉理工大学学报:信息与管理工程版, 2022, 44(6):6.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
357 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
169 0
|
2月前
|
传感器 机器学习/深度学习 数据采集
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
238 0
|
4月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
271 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
3月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
113 0
|
3月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
660 0
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。

热门文章

最新文章