科技云报道:大模型时代,AI基础软件机会何在?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大模型落地的效率支撑

科技云报道原创。

大模型时代,离不开算力,算法、数据的喂养。如果将视角放至整个产业链上,算法背后,还有一个关键要素值得被关注,那就是AI基础软件。

算法是实现AI功能的关键,而基础软件则为算法提供运行的平台和工具。作为模型生态系统的中坚力量,AI基础软件将会成为大模型应用落地的最主要的效率支撑,并通过大模型+小模型的方式,形成模型训练新范式。

现今,AI大模型在国内热度高涨,遍地开花,这也同样倒推着基础软件的发展。在这背景下,AI基础软件市场如何,未来有何新的机会,这一点值得关注和讨论。

未命名1686309494.png

基础软件是人工智能的底座

中国信通院云大所副所长魏凯在公开演讲中曾谈到,基础软件是人工智能的底座,人工智能的基础软件的发展决定了人工智能发展的深度、高度、广度,可以说是非常重要。

对此,魏凯解释道,基础软件重要性具体表现有三点,一是人工智能的发展离不开高质量的基础软件,尤其是基础软件的工程化的易用性、完备性,AI具体的落地实践都需要在基础软件结合业务、数据实现;二是人工智能基础软件要在企业中发挥作用,要与场景结合,要很好的运维;三是需要有安全可信保障条件。

AI基础软件是构建和运行AI应用的必要组成部分,通常包括以下几个方面:

机器学习框架和库:这是构建和训练AI模型的基本工具。例如,TensorFlow、PyTorch和Scikit-learn都是广泛使用的机器学习框架和库。

模型训练和部署平台:这些平台提供了一系列工具和服务,支持从数据处理、模型训练到模型部署和服务的全流程。例如,Google的Cloud ML Engine和Amazon的SageMaker都是这样的平台。

数据处理和分析工具:在AI应用中,数据是至关重要的。数据处理和分析工具可以帮助用户高效地处理和分析数据,以满足AI模型的训练需求。例如,Pandas、NumPy和Spark都是常用的数据处理和分析工具。

优化和自动化工具:这些工具可以帮助用户优化模型的性能,或者自动化一些重复性的工作。例如,TensorBoard可以帮助用户可视化模型的训练过程,AutoML则可以自动化模型的选择和调优过程。

总的来说,AI基础软件提供了一系列必要的工具和服务,使用户能够更方便、高效地构建和运行AI应用。

目前,随着AI技术的不断普及和深入应用,中国AI基础软件市场正在迅速发展。Gartner预测,该市场未来五年营收将从47.67亿美元增长到138.58亿美元,年复合增长率(CAGR)将达到28%。

据悉,中国的AI软件市场中有3,000余家厂商,其中大部分属于AI多面手型厂商,可向客户独立提供自然语言处理(NLP)、计算机视觉(CV)和机器学习(ML)技术。

这些厂商提供端到端个性化增强服务、咨询服务和运营服务,解决客户的具体业务问题。

随着市场的持续扩张,中国AI软件公司的数量也会增长。目前,在市场上的玩家主要包含这两大类,一是包括百度、阿里巴巴、腾讯等大型互联网公司,二是包括旷视科技、九章云极DataCanvas等专业AI公司。

这些公司不仅提供了具有国际竞争力的机器学习框架和平台,还开发了针对中国市场特点的特色产品和服务。

拿九章云极DataCanvas来说,目前公司拥有以“开放、自动、云原生”为核心的数据科学产品体系,包括为数据科学家、应用程序开发人员和业务专家提供高效的构建智能应用程序的工具包——DataCanvas APS机器学习平台;——提供可扩展、高可用和容错架构的大数据实时处理能力,灵活开发、部署和运行各类实时分析应用程序,助力企业完成了高效构建实时业务数据模型、打造实时AI场景的DataCanvas RT实时决策中心平台等一系列企业级AI应用所需的平台软件产品。

并且在全球人工智能开源领域,自主研发的多项全球首个开源项目,填补AI领域技术空白。此外,在AIGC的技术热潮下,九章云极D-lab开源团队正在开展交叉型研究,加速实现AI前沿技术的融合创新。

今年5月,九章云极DataCanvas公布了与中国信通院云大所就“高质量AI基础设施产业化”相关合作。

双方将在此前标准制定、评估评测、技术创新、产业研究等丰富合作的基础上,发挥各自在AI基础设施方向理论研究、技术创新和应用实践的资源优势,打通AI基础设施上下游生态链,共建开放、强大、灵活的AI基础设施生态。

机遇和挑战并行:优质的产品和服务是突围的关键

与此同时,市场竞争也日趋激烈,技术更新换代的速度也越来越快。

进入大模型时代,AI基础软件面临的挑战显而易见:如何支持更大规模的模型训练?如何优化模型的性能和效率?如何简化模型的部署和使用?对于这些问题,AI基础软件需要找到新的解决方案。

首先,为了支持更大规模的模型训练,AI基础软件需要提供更强大的计算能力。

这可能涉及到更高效的分布式计算技术、更优化的硬件加速技术等。这是一个技术挑战,也是一个机会。对于具备技术优势的公司而言,他们可以通过提供更强大、更高效的AI训练平台,来满足用户的需求,获得市场份额。

其次,随着模型规模的增大,模型的性能和效率优化也变得更加重要。

这需要AI基础软件提供更高级的优化工具和服务。

例如,模型压缩技术可以减小模型的大小,提高模型的运行速度;自动化调参工具可以自动寻找最优的模型参数,提高模型的准确性。

这些技术不仅可以帮助用户更好地使用大模型,也可以为AI基础软件公司提供新的商业机会。

再次,随着AI应用的日益复杂化,如何简化模型的部署和使用也变得尤为重要。

这需要AI基础软件提供更简洁易用的API,更强大的部署工具,更智能的服务平台等。这对于AI基础软件公司来说,是一个提升用户体验,提高用户黏性的机会。

“底层海量的多模态数据管理与上层更加精准的分析决策需求,将推动数智融合进入深水区,为打造AI基础软件带来新的机遇”, IDC中国人工智能和大数据高级分析师李浩然在杭州通用人工智能论坛的演讲中谈到。

对于客户更加关注的开发服务平台这一基础软件,科技企业应从全生命周期组件、低代码/无代码、自动机器学习、算法模型库、可视化、部署运维六个方面进行建设,并注重与云服务、大数据组件的融合。

对此,九章云极DataCanvas副总裁周晓凌表示,公司长期布局这些重要技术能力,并通过一整套成体系的AI基础软件产品应用在金融、通信、交通、制造、能源等行业中。

他继续谈到,AI技术从分散模型到融合智能,再迈向通用人工智能的发展路程上极大的推动了政府和企业数智化浪潮;各行业有各自发展特点和转型阶段化差异,在云化、自动化、多模态、分布式等技术领域迭代升级AI平台和AI应用能力方面存在可观需求,从运营到经营的AI应用发展空间依然巨大。

总的来说,大模型时代对AI基础软件提出了新的要求和挑战,也带来了新的机会。对于中国的AI基础软件公司而言,如何抓住这些机会,将在很大程度上决定他们在未来市场中的竞争地位。

一方面,他们需要持续投入研发,提升技术水平,满足用户对大模型的需求;另一方面,他们也需要不断创新,提供差异化的产品和服务,赢得市场份额。

在大模型时代,AI基础软件的机会何在?

答案就在于如何满足用户的需求,如何提供优质的产品和服务。只有那些能够紧跟时代步伐,积极创新,不断进取的公司,才能在这个充满挑战和机遇的时代中立足并繁荣发展。

关于未来

回顾AI的发展历程,我们可以看到,硬件一直是最大的投入领域,但随着技术的进步和市场的成熟,软件正在逐渐提升其在AI产业链中的地位。

据IDC预测,2023年以后,各大厂商将更加投入到底层基础软件的建设中,这也是现在已经初显端倪的趋势。

此外,IDC预测未来AI市场的增量将主要来源于三个方面:

首先,是基于大模型应用替换过去几年建设的AI应用。正如前文所述,大模型可以学习到更复杂的模式,从而在各种任务上取得更好的效果。

随着技术和市场的发展,我们预见到许多现有的AI应用将被基于大模型的新应用所替代,这将产生巨大的市场增量。

其次,是生成式AI带来的增量市场。生成式AI,如生成式对抗网络(GAN)和变分自编码器(VAE),可以生成新的、逼真的数据,有着广泛的应用前景,如艺术创作、游戏设计、虚拟现实等。随着技术的发展,我们预见到生成式AI将开辟新的市场领域,带来新的增量。

最后,是全新AI赋能的企业级应用。AI技术可以帮助企业提高效率,降低成本,创新业务模式。随着AI技术的深入应用,我们预见到将有更多的企业级应用出现,这将是一个有巨大爆发潜力的市场点。

总的来说,AI产业链的发展趋势是多元化和深化。在硬件投入的基础上,底层基础软件的建设将越来越重要。

同时,大模型应用、生成式AI和企业级应用将是未来市场的三大增量来源。这为AI产业链的上下游各环节都带来了新的机会,也提出了新的挑战。只有紧跟趋势,抓住机会,才能在这个快速发展的市场中保持领先。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
128 97
|
9天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
1天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
25 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
8天前
|
机器学习/深度学习 人工智能 智能设计
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
VisionFM 是一个多模态多任务的视觉基础模型,专为通用眼科人工智能设计。通过预训练大量眼科图像,模型能够处理多种眼科成像模态,并在多种眼科任务中展现出专家级别的智能性和准确性。
43 4
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
|
3天前
|
机器学习/深度学习 人工智能 安全
阿里云先知安全沙龙(武汉站) ——AI赋能软件漏洞检测,机遇, 挑战与展望
本文介绍了漏洞检测的发展历程、现状及未来展望。2023年全球披露的漏洞数量达26447个,同比增长5.2%,其中超过7000个具有利用代码,115个已被广泛利用,涉及多个知名软件和系统。文章探讨了从人工审计到AI技术的应用,强调了数据集质量对模型性能的重要性,并展示了不同检测模型的工作原理与实现方法。此外,还讨论了对抗攻击对模型的影响及提高模型可解释性的多种方法,展望了未来通过任务大模型实现自动化漏洞检测与修复的趋势。
|
1天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
34 5
|
9天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
49 13
|
2天前
|
人工智能 资源调度 调度
云上AI Infra解锁大模型创新应用
本节课程由阿里云智能集团资深技术专家王超分享,主题为AI基础设施的发展趋势。课程聚焦于AI Infra设计与Scaling Law,探讨了下一代AI基础设施的设计目标、功能升级及推理场景中的应用。主要内容包括高效支持大规模模型训练和推理、全球调度系统的设计、Rack level的Scale优化以及多租户容器化使用方式。通过这些改进,旨在提升并行效率、资源利用率及稳定性,推动AI基础设施迈向更高性能和更优调度的新阶段。
|
7天前
|
人工智能 自然语言处理 计算机视觉
AI大模型开启智能化新时代
12月19日下午,复旦大学计算机科学技术学院第十二期“步青讲坛”在江湾校区二号交叉学科楼E1006报告厅举行。本期讲坛特别邀请了阿里巴巴集团副总裁、IEEE Fellow叶杰平教授做题为《AI大模型开启智能化新时代》的精彩技术报告。
72 4