m基于FPGA的通信数据帧加扰解扰verilog实现,包含testbench

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
简介: m基于FPGA的通信数据帧加扰解扰verilog实现,包含testbench

1.算法仿真效果

本系统进行了两个平台的开发,分别是:

Vivado2019.2

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition

其中Vivado2019.2仿真结果如下:

4a5d1810e5161efe3a21d3a30c40b917_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:

84d033fddd4c8ffa6d2639a0775015dc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
现代通信系统中,为了保证数据传输的可靠性和安全性,通常需要采用一定的加密和解密技术。数据加扰和解扰是其中的一种重要手段,它们可以在不增加传输开销的情况下,有效地抵御各种干扰和攻击。本文将对数据加扰和解扰的原理、优势以及FPGA实现过程进行详细介绍。
1、数据加扰原理
数据加扰是指在传输数据之前,对原始数据进行一定的变换,使得数据在传输时呈现出更加随机的特征。这样可以有效地抵御各种形式的干扰,包括电磁干扰、信道噪声、多径衰落等。数据加扰的基本原理是通过一定的算法,将原始数据进行一定的变换,使得变换后的数据在统计特性上与原始数据不同。这样可以使得传输过程中的干扰和噪声对数据的影响降低,从而提高数据传输的可靠性。
数据加扰的实现方式有很多种,其中比较常见的方式包括异或加扰、置换加扰和混沌加扰等。异或加扰是最简单的一种加扰方式,其原理是将原始数据与一个随机数序列进行异或运算,从而得到加扰后的数据。置换加扰是指通过对原始数据进行一定的置换操作,使得加扰后的数据具有更加随机的特征。混沌加扰是利用混沌系统的特性进行加扰,通过混沌映射或混沌流产生随机序列,再将原始数据与随机序列进行异或运算,从而得到加扰后的数据。
2、数据解扰原理
数据解扰是指对加扰后的数据进行解密,恢复出原始数据。数据解扰的原理与数据加扰的原理类似,通常采用相反的运算方法,将加扰后的数据恢复为原始数据。如果采用异或加扰方式,那么解扰的方式就是将加扰后的数据再次与随机数序列进行异或运算。如果采用置换加扰方式,那么解扰的方式就是将加扰后的数据再次进行相应的置换操作。如果采用混沌加扰方式,那么解扰的方式就是通过混沌系统产生的随机序列与加扰后的数据进行异或运算,从而恢复出原始数据。
3、数据加扰解扰的优势
数据加扰和解扰技术具有以下几个优势:
(1)提高传输可靠性:加扰后的数据具有更加随机的特征,可以有效地抵御各种形式的干扰和攻击,从而提高数据传输的可靠性。
(2)不增加传输开销:数据加扰和解扰的算法可以在传输过程中实现,不需要额外的传输开销,同时也不会增加传输延迟。
(3)保护数据安全:加扰后的数据具有更高的安全性,可以有效地防止数据泄露和非法访问,保护数据的安全性。
4、FPGA实现过程
FPGA是一种可编程逻辑器件,可以根据应用需求编程实现各种功能。在数据加扰和解扰中,FPGA可以实现加扰和解扰算法,并将其应用于通信系统中,以提高数据传输的可靠性和安全性。
FPGA实现数据加扰的过程可以分为以下几个步骤:
(1)设计加扰算法:根据应用需求,设计合适的加扰算法,包括异或加扰、置换加扰和混沌加扰等。在设计加扰算法时,需要考虑加扰后的数据是否具有足够的随机性和安全性。
(2)实现加扰算法:将加扰算法转化为FPGA可编程的语言,如VHDL或Verilog等。实现加扰算法时,需要考虑算法的效率和复杂度,以确保其能够在FPGA上实现。
(3)设计FPGA电路:根据加扰算法,设计FPGA电路,包括输入输出端口、加扰逻辑电路、时钟电路等。在设计FPGA电路时,需要考虑电路的功耗和面积,以保证电路能够在FPGA上实现。
(4)编译和下载:将设计好的FPGA电路编译为比特流文件,并下载到FPGA芯片中。在下载时,需要注意FPGA芯片的型号和时钟频率等参数,以确保电路能够正常工作。
FPGA实现数据解扰的过程与数据加扰类似,主要包括设计解扰算法、实现解扰算法、设计FPGA电路和编译下载等步骤。需要注意的是,在实现解扰算法时,需要考虑解扰算法与加扰算法的对应关系,以确保能够正确地恢复出原始数据。
数据加扰和解扰是现代通信系统中常用的数据保护技术,可以提高数据传输的可靠性和安全性。在实际应用中,FPGA可以实现加扰和解扰算法,并将其应用于通信系统中。FPGA实现数据加扰和解扰的过程包括设计算法、实现算法、设计FPGA电路和编译下载等步骤,需要考虑算法的效率和复杂度,以及电路的功耗和面积等因素。

3.Verilog核心程序
````timescale 1ns / 1ps
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TEST();

reg i_clk;
reg i_rst;
reg i_enable;
reg i_start;
reg i_din;

wire o_enable_scr;
wire o_start_scr;
wire o_dout_scr;

wire o_enable_dscr;
wire o_start_dscr;
wire o_dout_dscr;

tops uut(
.i_clk (i_clk),
.i_rst (i_rst),
.i_enable (i_enable),
.i_start (i_start),
.i_din (i_din),

.o_enable_scr (o_enable_scr),
.o_start_scr (o_start_scr),
.o_dout_scr (o_dout_scr),

.o_enable_dscr (o_enable_dscr),
.o_start_dscr (o_start_dscr),
.o_dout_dscr (o_dout_dscr)
);

initial
begin
i_clk = 1'b1;
i_rst = 1'b1;

1000

i_rst = 1'b0;
end
initial
begin
i_enable = 1'b0;

1000

i_enable = 1'b1;

1280

i_enable = 1'b0;
end

initial
begin
i_start = 1'b0;

1000

i_start = 1'b1;

10

i_start = 1'b0;
end
initial
begin
i_din = 1'b0;

1000

i_din = 1'b0;

10

i_din = 1'b1;

100

i_din = 1'b0;

50

i_din = 1'b1;

140

i_din = 1'b0;

120

i_din = 1'b1;

30

i_din = 1'b0;

20

i_din = 1'b1;

70

i_din = 1'b0;

10

i_din = 1'b1;

20

i_din = 1'b0;

130

i_din = 1'b0;

50

i_din = 1'b1;

140

i_din = 1'b0;

220

i_din = 1'b1;

130

i_din = 1'b0;

1000

$stop();

end

always #5 i_clk=~i_clk;

endmodule
```

相关文章
|
1天前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
24 16
|
1月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
1月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
40 3
|
23天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
33 0
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
77 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的BPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
32 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
50 5
|
3月前
|
C语言 芯片 异构计算
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
|
4月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
3月前
|
算法 异构计算
FPGA入门(2):Verilog HDL基础语法
FPGA入门(2):Verilog HDL基础语法
26 0

热门文章

最新文章