【数据结构】一文带你掌握二叉树的构造与应用

简介: 【数据结构】一文带你掌握二叉树的构造与应用

PS: 前面我们已经详细介绍了二叉树的概念以及二叉树的遍历的概念等,一些详细概念知识点可以在下面链接中的博客查看。本文主要需要使用代码自己实现二叉树及应用。

二叉树的概念及遍历


1. 构造二叉树

二叉树是由一个节点一个个连接而成的,每个节点最多连接两个节点,所以每个节点需要有一个数据元素和两个指向左右子树的指针,当没有左右子树时,可以为null。

public class MyTreeNode {
    public int val;
    public MyTreeNode left,right;
    public MyTreeNode(int val){
        this.val = val;
    }
    public MyTreeNode(){}
}    


因为编译器本身并不会自动构造二叉树,所以我们要编写程序来构造一个二叉树,并通过一个节点root记录根节点。

    //构造Tree
    public MyTreeNode root;
    public MyTreeNode createTree(){
        MyTreeNode node1 = new MyTreeNode(1);
        MyTreeNode node2 = new MyTreeNode(2);
        MyTreeNode node3 = new MyTreeNode(3);
        MyTreeNode node4 = new MyTreeNode(4);
        MyTreeNode node5 = new MyTreeNode(5);
        MyTreeNode node6 = new MyTreeNode(6);
        root = node1;
        node1.left = node2;
        node2.left = node3;
        node1.right = node4;
        node4.left = node5;
        node4.right = node6;
        return root;
    }


如图

接下来应用将围绕此树进行。

851c53aa93a14be3a2e4350a3afa9313.png


2. 前序遍历

前序遍历的遍历顺序:访问根结点—>根的左子树—>根的右子树。

遍历结果:123456

2.1 前序遍历递归

参数root是当前节点,如果为null说明已经到叶子节点,直接返回。否则,我们先输出当前节点的值,然后递归遍历左子树,最后递归遍历右子树。

    // 前序遍历递归
    public void preOrder(MyTreeNode root){
        if(root == null){
            return;
        }
        System.out.print(root.val + " ");
        preOrder(root.left);
        preOrder(root.right);
    }


2.2 前序遍历非递归

我们使用一个栈来辅助遍历。首先将根节点压入栈中,然后每次从栈中弹出一个节点,并输出它的值。如果该节点有右子树,我们就将右子树压入栈中,因为左子树后遍历,为了后遍历左子树,我们将左子树后入栈,所以先遍历右子树。如果该节点有左子树,我们就将左子树压入栈中,因为下一步要遍历左子树。这样,我们就依次访问了整个二叉树节点。

    //前序遍历非递归
    public void norPreOrder(MyTreeNode root){
        if(root == null){
            return;
        }
        Stack<MyTreeNode> stack = new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            MyTreeNode cur = stack.pop();
            System.out.print(cur.val + " ");
            if(cur.right != null){
                stack.push(cur.right);
            }
            if(cur.left != null){
                stack.push(cur.left);
            }
        }
    }


3. 中序遍历

根的左子树—>根节点—>根的右子树。

遍历结果:321546


3.1 中序遍历递归

用递归实现,先递归遍历左子树,遍历完后将节点值加入结果列表中,然后再递归遍历右子树。

    // 中序遍历递归
    public void inOrder(MyTreeNode root){
        if(root == null){
            return;
        }
        inOrder(root.left);
        System.out.print(root.val + " ");
        inOrder(root.right);
    }


3.2 中序遍历非递归

借助辅助栈实现非递归中序遍历,首先检查当前节点是否为空以及是否有左子节点,如果有则将节点入栈,并将当前节点指向左子节点,继续进入循环,直到左子树遍历完毕,然后将节点出栈并添加到结果列表中,将当前节点指向右子节点,继续遍历。

    //中序遍历非递归
    public void norInOrder(MyTreeNode root){
        if(root == null){
            return;
        }
        Stack<MyTreeNode> stack = new Stack<>();
        MyTreeNode curr = root;
        while(curr != null || !stack.empty()) {
            while (curr != null) {
                stack.push(curr);
                curr = curr.left;
            }
            curr = stack.pop();
            System.out.print(curr.val + " ");
            curr = curr.right;
        }
    }


4. 后序遍历

根的左子树—>根的右子树—>根节点。

遍历结果:325641


4.1 后序遍历递归

用递归实现后序遍历,先递归遍历左子树,然后递归遍历右子树,最后将当前节点的值添加到结果列表中。

    // 后序遍历递归
    public void postOrder(MyTreeNode root){
        if(root == null){
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val + " ");
    }


4.2 后序遍历非递归

用辅助栈实现后序遍历,首先将根节点入栈,然后定义一个辅助栈,将根节点出栈并压入辅助栈中。然后依次将当前节点的左孩子和右孩子入栈,但先入右孩子再入左孩子,因为要保证左孩子后访问。重复这个过程直到栈为空,然后从辅助栈依次将节点的值添加到结果列表中。

  //后序遍历非递归
    public void norPostOrder(MyTreeNode root) {
        if (root == null) {
            return;
        }
        Stack<MyTreeNode> stack1 = new Stack<>();
        Stack<MyTreeNode> stack2 = new Stack<>();
        stack1.push(root);
        while (!stack1.isEmpty()) {
            MyTreeNode cur = stack1.pop();
            stack2.push(cur);
            if (cur.left != null) {
                stack1.push(cur.left);
            }
            if (cur.right != null) {
                stack1.push(cur.right);
            }
        }
        while (!stack2.isEmpty()) {
            System.out.print(stack2.pop().val + " ");
        }
    }


5. 层序遍历

从根节点一层一层的遍历,借助队列的先进先出的特性实现.

    //层序遍历
    public void levelOrder(MyTreeNode root){
        if(root == null){
            return;
        }
        Queue<MyTreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            MyTreeNode cur = queue.poll();
            System.out.print(cur.val + " ");
            if(cur.left != null){
                queue.offer(cur.left);
            }
            if(cur.right != null){
                queue.offer(cur.right);
            }
        }
    }


6. 节点个数

6.1 所有节点个数

直接递归,遍历整个树,递归一次加1.

    // 获取树中节点的个数
    public int size(MyTreeNode root){
        if(root == null){
            return 0;
        }
        return size(root.left) + root.size(root.right) + 1;
    }


6.2 获得叶子节点个数

利用递归直接遍历,左右节点为null,则为叶子节点,加1.

    // 获取叶子节点的个数
    //叶子个数
    static int countLeaf = 0;
    public int sizeLeaf(MyTreeNode root){
        if(root == null){
            return 0;
        }
        if(root.left == null && root.right == null){
            countLeaf++;
        }
        sizeLeaf(root.left);
        sizeLeaf(root.right);
        return countLeaf;
    }


7. 检测值为value的元素是否存在

遍历,寻找

    // 检测值为value的元素是否存在
    public MyTreeNode find(MyTreeNode root, int val) {
        if(root == null) {
            return null;
        }
        if(root.val == val){
            return root;
        }
        MyTreeNode left = find(root.left,val);
        if(left != null){
            return left;
        }
        MyTreeNode right = find(root.right,val);
        if(right != null){
            return right;
        }
        return null;
    }


8.总结

这些实现都是经典的,类似这种可太多,我们平常可以多刷刷题,提升自己的代码能力,这样也可以更好的提升自己的代码能力.

大家可以也关注我的刷题集,每周更新经典好题,瑞思拜!

数据结构刷题集

目录
相关文章
|
28天前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
42 1
|
1月前
|
存储 算法 C语言
通义灵码在考研C语言和数据结构中的应用实践 1-5
通义灵码在考研C语言和数据结构中的应用实践,体验通义灵码的强大思路。《趣学C语言和数据结构100例》精选了五个经典问题及其解决方案,包括求最大公约数和最小公倍数、统计字符类型、求特殊数列和、计算阶乘和双阶乘、以及求斐波那契数列的前20项和。通过这些实例,帮助读者掌握C语言的基本语法和常用算法,提升编程能力。
64 4
|
18天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
67 8
|
27天前
|
机器学习/深度学习 存储 人工智能
数据结构在实际开发中的广泛应用
【10月更文挑战第20天】数据结构是软件开发的基础,它们贯穿于各种应用场景中,为解决实际问题提供了有力的支持。不同的数据结构具有不同的特点和优势,开发者需要根据具体需求选择合适的数据结构,以实现高效、可靠的程序设计。
61 7
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
22 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
25 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
探索数据结构:队列的的实现与应用
探索数据结构:队列的的实现与应用
|
1月前
|
存储
探索数据结构:单链表的实践和应用
探索数据结构:单链表的实践和应用
|
1月前
|
存储 测试技术
探索数据结构:顺序表的实现与应用
探索数据结构:顺序表的实现与应用

热门文章

最新文章

下一篇
无影云桌面