第12章_数据库其它调优策略(上)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云解析 DNS,旗舰版 1个月
简介: 第12章_数据库其它调优策略

1. 数据库调优的措施

1.1 调优的目标

尽可能节省系统资源 ,以便系统可以提供更大负荷的服务。(吞吐量更大)

合理的结构设计和参数调整,以提高用户操作响应的速度 。(响应速度更快)

减少系统的瓶颈,提高MySQL数据库整体的性能。

1.2 如何定位调优问题

image-20220707200915836.png

如何确定呢?一般情况下,有如下几种方式:


image-20220707201133424.png

1.3 调优的维度和步骤

我们需要调优的对象是整个数据库管理系统,它不仅包括 SQL 查询,还包括数据库的部署配置、架构 等。从这个角度来说,我们思考的维度就不仅仅局限在 SQL 优化上了。通过如下的步骤我们进行梳理:


第1步:选择适合的 DBMS

image-20220707201443229.png

第2步:优化表设计

image-20220707201617799.png

第3步:优化逻辑查询

image-20220707202059972.png

第4步:优化物理查询

物理查询优化是在确定了逻辑查询优化之后,采用物理优化技术(比如索引等),通过计算代价模型对 各种可能的访问路径进行估算,从而找到执行方式中代价最小的作为执行计划。在这个部分中,我们需要掌握的重点是对索引的创建和使用。

image-20220707202156660.png


第5步:使用 Redis 或 Memcached 作为缓存

除了可以对 SQL 本身进行优化以外,我们还可以请外援提升查询的效率。


因为数据都是存放到数据库中,我们需要从数据库层中取出数据放到内存中进行业务逻辑的操作,当用 户量增大的时候,如果频繁地进行数据查询,会消耗数据库的很多资源。如果我们将常用的数据直接放 到内存中,就会大幅提升查询的效率。


键值存储数据库可以帮我们解决这个问题。


常用的键值存储数据库有 Redis 和 Memcached,它们都可以将数据存放到内存中。

image-20220707202436467.png


第6步:库级优化

 image-20220707202555506.png

image-20220707202732911.png


image-20220707203538155.png

image-20220707203607993.png


但需要注意的是,分拆在提升数据库性能的同时,也会增加维护和使用成本。


2. 优化MySQL服务器


2.1 优化服务器硬件


服务器的硬件性能直接决定着MySQL数据库的性能。硬件的性能瓶颈直接决定MySQL数据库的运行速度 和效率。针对性能瓶颈提高硬件配置,可以提高MySQL数据库查询、更新的速度。


(1) 配置较大的内存 。足够大的显存是提高MySQL数据库性能的方法之一。内存的速度比磁盘I/O快得多,可以通过增加系统的缓冲区容量使数据在内存中停留的时间更长,以减少磁盘I/O。


(2) 配置高速磁盘系统 ,以减少读盘的等待时间,提高响应速度。磁盘的I/O能力,也就是它的寻道能力,目前的SCSI高速旋转的是7200转/分钟,这样的速度,一旦访问的用户量上去,磁盘的压力就会过大,如果是每天的网站pv (page view) 在150w,这样的一般的配置就无法满足这样的需求了。现在SSD盛行,在SSD上随机访问和顺序访问性能差不多,使用SSD可以减少随机IO带来的性能损耗。


(3) 合理分布磁盘I/O,把磁盘I/O分散在多个设备,以减少资源竞争,提高冰箱操作能力。


(4) 配置多处理器, MySQL是多线程的数据库,多处理器可同时执行多个线程。


2.2 优化MySQL的参数

image-20220707204403406.png

innodb_buffer_pool_size :这个参数是Mysql数据库最重要的参数之一,表示InnoDB类型的 表 和索引的最大缓存 。它不仅仅缓存 索引数据 ,还会缓存 表的数据 。这个值越大,查询的速度就会越 快。但是这个值太大会影响操作系统的性能。


key_buffer_size :表示 索引缓冲区的大小 。索引缓冲区是所有的 线程共享 。增加索引缓冲区可 以得到更好处理的索引(对所有读和多重写)。当然,这个值不是越大越好,它的大小取决于内存 的大小。如果这个值太大,就会导致操作系统频繁换页,也会降低系统性能。对于内存在 4GB 左右 的服务器该参数可设置为 256M 或 384M 。


table_cache :表示 同时打开的表的个数 。这个值越大,能够同时打开的表的个数越多。物理内 存越大,设置就越大。默认为2402,调到512-1024最佳。这个值不是越大越好,因为同时打开的表 太多会影响操作系统的性能。


query_cache_size :表示 查询缓冲区的大小 。可以通过在MySQL控制台观察,如果 Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况,就要增加Query_cache_size 的值;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效 率,那么可以考虑不用查询缓存;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很 多。MySQL8.0之后失效。该参数需要和query_cache_type配合使用。


query_cache_type 的值是0时,所有的查询都不使用查询缓存区。但是query_cache_type=0并不 会导致MySQL释放query_cache_size所配置的缓存区内存。


当query_cache_type=1时,所有的查询都将使用查询缓存区,除非在查询语句中指定 SQL_NO_CACHE ,如SELECT SQL_NO_CACHE * FROM tbl_name。

当query_cache_type=2时,只有在查询语句中使用 SQL_CACHE 关键字,查询才会使用查询缓 存区。使用查询缓存区可以提高查询的速度,这种方式只适用于修改操作少且经常执行相同的 查询操作的情况。

sort_buffer_size :表示每个 需要进行排序的线程分配的缓冲区的大小 。增加这个参数的值可以 提高 ORDER BY 或 GROUP BY 操作的速度。默认数值是2 097 144字节(约2MB)。对于内存在4GB 左右的服务器推荐设置为6-8M,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。


join_buffer_size = 8M :表示 联合查询操作所能使用的缓冲区大小 ,和sort_buffer_size一样, 该参数对应的分配内存也是每个连接独享。


read_buffer_size :表示 每个线程连续扫描时为扫描的每个表分配的缓冲区的大小(字节) 。当线 程从表中连续读取记录时需要用到这个缓冲区。SET SESSION read_buffer_size=n可以临时设置该参 数的值。默认为64K,可以设置为4M。


innodb_flush_log_at_trx_commit :表示 何时将缓冲区的数据写入日志文件 ,并且将日志文件 写入磁盘中。该参数对于innoDB引擎非常重要。该参数有3个值,分别为0、1和2。该参数的默认值 为1。


值为 0 时,表示 每秒1次 的频率将数据写入日志文件并将日志文件写入磁盘。每个事务的 commit并不会触发前面的任何操作。该模式速度最快,但不太安全,mysqld进程的崩溃会导 致上一秒钟所有事务数据的丢失。

值为 1 时,表示 每次提交事务时 将数据写入日志文件并将日志文件写入磁盘进行同步。该模 式是最安全的,但也是最慢的一种方式。因为每次事务提交或事务外的指令都需要把日志写入 (flush)硬盘。

值为 2 时,表示 每次提交事务时 将数据写入日志文件, 每隔1秒 将日志文件写入磁盘。该模 式速度较快,也比0安全,只有在操作系统崩溃或者系统断电的情况下,上一秒钟所有事务数 据才可能丢失。

innodb_log_buffer_size :这是 InnoDB 存储引擎的 事务日志所使用的缓冲区 。为了提高性能, 也是先将信息写入 Innodb Log Buffer 中,当满足 innodb_flush_log_trx_commit 参数所设置的相应条 件(或者日志缓冲区写满)之后,才会将日志写到文件(或者同步到磁盘)中。


max_connections :表示 允许连接到MySQL数据库的最大数量 ,默认值是 151 。如果状态变量 connection_errors_max_connections 不为零,并且一直增长,则说明不断有连接请求因数据库连接 数已达到允许最大值而失败,这是可以考虑增大max_connections 的值。在Linux 平台下,性能好的 服务器,支持 500-1000 个连接不是难事,需要根据服务器性能进行评估设定。这个连接数 不是越大 越好 ,因为这些连接会浪费内存的资源。过多的连接可能会导致MySQL服务器僵死。


back_log :用于 控制MySQL监听TCP端口时设置的积压请求栈大小 。如果MySql的连接数达到 max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即 back_log,如果等待连接的数量超过back_log,将不被授予连接资源,将会报错。5.6.6 版本之前默 认值为 50 , 之后的版本默认为 50 + (max_connections / 5), 对于Linux系统推荐设置为小于512 的整数,但最大不超过900。


如果需要数据库在较短的时间内处理大量连接请求, 可以考虑适当增大back_log 的值。


thread_cache_size : 线程池缓存线程数量的大小 ,当客户端断开连接后将当前线程缓存起来, 当在接到新的连接请求时快速响应无需创建新的线程 。这尤其对那些使用短连接的应用程序来说可 以极大的提高创建连接的效率。那么为了提高性能可以增大该参数的值。默认为60,可以设置为 120


可以通过如下几个MySQL状态值来适当调整线程池的大小:

mysql> show global status like 'Thread%';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Threads_cached | 2 |
| Threads_connected | 1 |
| Threads_created | 3 |
| Threads_running | 2 |
+-------------------+-------+
4 rows in set (0.01 sec)

当 Threads_cached 越来越少,但 Threads_connected 始终不降,且 Threads_created 持续升高,可 适当增加 thread_cache_size 的大小。


wait_timeout :指定 一个请求的最大连接时间 ,对于4GB左右内存的服务器可以设置为5-10。


interactive_timeout :表示服务器在关闭连接前等待行动的秒数。


这里给出一份my.cnf的参考配置:


mysqld]
port = 3306 
serverid = 1 
socket = /tmp/mysql.sock 
skip-locking #避免MySQL的外部锁定,减少出错几率增强稳定性。 
skip-name-resolve #禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求! 
back_log = 384
key_buffer_size = 256M 
max_allowed_packet = 4M 
thread_stack = 256K
table_cache = 128K 
sort_buffer_size = 6M 
read_buffer_size = 4M
read_rnd_buffer_size=16M 
join_buffer_size = 8M 
myisam_sort_buffer_size =64M 
table_cache = 512 
thread_cache_size = 64 
query_cache_size = 64M
tmp_table_size = 256M 
max_connections = 768 
max_connect_errors = 10000000
wait_timeout = 10 
thread_concurrency = 8 #该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8
skip-networking #开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接! 
table_cache=1024
innodb_additional_mem_pool_size=4M #默认为2M 
innodb_flush_log_at_trx_commit=1
innodb_log_buffer_size=2M #默认为1M 
innodb_thread_concurrency=8 #你的服务器CPU有几个就设置为几。建议用默认一般为8 
tmp_table_size=64M #默认为16M,调到64-256最挂
thread_cache_size=120 
query_cache_size=32M

很多情况还需要具体情况具体分析!

举例:


image-20220707210351452.png


(1) 调整系统参数 InnoDB_flush_log_at_trx_commit

(2) 调整系统参数 InnoDB_buffer_pool_size

(3) 调整系统参数 InnoDB_buffer_pool_instances

目录
相关文章
|
3月前
|
存储 缓存 监控
数据库优化技术:提升性能与效率的关键策略
【10月更文挑战第15天】数据库优化技术:提升性能与效率的关键策略
121 8
|
4月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
2月前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
2月前
|
监控 关系型数据库 MySQL
Linux环境下MySQL数据库自动定时备份策略
在Linux环境下,MySQL数据库的自动定时备份是确保数据安全和可靠性的重要措施。通过设置定时任务,我们可以每天自动执行数据库备份,从而减少人为错误和提高数据恢复的效率。本文将详细介绍如何在Linux下实现MySQL数据库的自动定时备份。
105 3
|
2月前
|
消息中间件 数据库 云计算
微服务架构下的数据库事务管理策略####
在微服务架构中,传统的单体应用被拆分为多个独立的服务单元,每个服务维护自己的数据库实例。这种设计提高了系统的可扩展性和灵活性,但同时也带来了分布式环境下事务管理的复杂性。本文探讨了微服务架构下数据库事务的挑战,并深入分析了几种主流的事务管理策略,包括Saga模式、两阶段提交(2PC)以及基于消息的最终一致性方案,旨在为开发者提供一套适应不同业务场景的事务处理框架。 ####
|
2月前
|
存储 Oracle 关系型数据库
Oracle数据库优化策略
【10月更文挑战第25天】Oracle数据库优化策略
42 5
|
2月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
488 1
|
2月前
|
SQL 关系型数据库 数据库
PostgreSQL性能飙升的秘密:这几个调优技巧让你的数据库查询速度翻倍!
【10月更文挑战第25天】本文介绍了几种有效提升 PostgreSQL 数据库查询效率的方法,包括索引优化、查询优化、配置优化和硬件优化。通过合理设计索引、编写高效 SQL 查询、调整配置参数和选择合适硬件,可以显著提高数据库性能。
605 1
|
3月前
|
存储 定位技术 数据库
介绍一下数据库的备份和恢复策略
【10月更文挑战第21】介绍一下数据库的备份和恢复策略